
1 of 68 120402

White Paper 1
SHA Devices Used in Small

Cash Systems
 www.maxim-ic.com

INTRODUCTION
Paying for products in the store is easy and convenient, provided that the store accepts "plastic money"
and the convenience fee doesn't cut too deeply into the profit of the merchant. Naturally, for small
purchases plastic is not accepted, which throws the customer back into the age of paper money and coins.
Traditional vending machines operate on coins only. As prices for products and services increase the
probability of having the right selection of coins on hand decreases. The situation isn't much improved by
the bill changers, found on some machines, since they refuse bills that are worn out or damaged. In the
worst case, one gets locked-in at a parking garage or gets fined for using public transit merely because of
"monetary problems" at the point of sale. A way out of this dilemma is the introduction of small cash
systems, that convert conventional money into "electronic cash" and store it in electronically readable
tokens for spending at vending stations that are equipped to handle electronic cash.

The main components of such a system are as follows:
1) The electronically readable and writable token, which carries the electronic cash,
2) The commissioning station, which initializes new tokens and issues them,
3) The revaluing station, which converts money (cash, plastic) into electronic cash and transfers it into

the token, and
4) The vending or POS station, which dispenses goods/tickets and deducts electronic cash from the

token.

A small cash system is convenient and efficient whenever a limited group of people frequently uses
services of the same organization. This could be at vending machines of a company cafeteria or private
club, city-operated parking garages, local transit systems, fitness centers, or entertainment parks.

This document explains the major aspects of implementing a small cash system using Dallas Semicon-
ductor iButton® products. In the two scenarios described in this document, the DS1963S serves as a cryp-
tographic coprocessor as well as token. The DS1961S is suited as a token only. Other major components
are the Secure Hash Algorithm (SHA-1) standard, microprocessor (host) hardware and firmware, the 1-
Wire® protocol and secrets.

SHORT DESCRIPTION OF THE SHA-DEVICES INVOLVED
The DS1963S and the DS1961S are essentially memory iButtons with integrated 512-bit SHA-1 engine.
Both devices support special command flows that feed data from various locations into the SHA-1
engine, start the engine and then make decisions based on the SHA-1 result and the data presented by a 1-
Wire master. This master could be a microcontroller, which communicates with the iButton via the 1-
Wire protocol. The DS1963S includes 16 pages of 32 bytes of NV SRAM, storage for eight 64-bit
secrets, individual 32-bit write-cycle counters for 8 of the 16 memory pages and each secret, and a 32-bit
pseudo-random number generator. For temporary storage and data verification, the DS1963S has a 32-
byte scratchpad. The DS1961S includes only four pages of 32 bytes EEPROM and storage for one 64-bit
secret, but no cycle counters or number generator. The size of the DS1961S's scratchpad is 8 bytes.

iButton and 1-Wire are registered trademarks
of Dallas Semiconductor.

www.maxim-ic.com

WP1

2 of 68

The 16 data memory pages of the DS1963S can be written just like any other Memory iButton. Writing to
pages 8 to 15 increments the associated page write cycle counter, indicating that there was a change.
Writing to the four memory pages of the DS1961S is only possible if one can make computations that
involve the secret that is installed in the device. Reading the data memory of the DS1961S or DS1963S
works the same way as with other Memory iButtons. There is no read-access to the secrets; they are
"write-only".

The SHA-1 engine is a hardware implementation of the Secure Hash Algorithm, which produces a 160-
bit output of one or more 512-bit sequentially processed input data blocks. Commonly used names for the
SHA-1 output are "message digest", "signature" or "message authentication code" (MAC). The SHA-1 is
called secure because it is computationally infeasible to find a message that corresponds to a given
message digest, or to find two different messages that produce the same message digest. Any change to a
message in transit will, with very high probability, result in a different message digest, and the signature
will fail to verify. The same hash algorithm must be used by the verifier of a digital signature as was used
by the creator of the digital signature. The SHA-1 algorithm was chosen for its security and because it is
an ISO/IEC standard (ISO10118-3).

The commands of the DS1963S that involve the SHA-1 engine are as follows:
� Read Authenticated Page
� Validate Data Page
� Sign Data Page
� Compute Challenge
� Authenticate Host
� Compute First Secret
� Compute Next Secret

This command set is designed to make the DS1963S suitable as multiple-service token, as a numeric
coprocessor for use in vending stations and revaluing stations, as well as for user authentication for
restricted log-in access to remote computers. The main difference between the SHA-1 commands consists
in the composition of the data that is fed into the SHA-1 engine and the processing of the SHA-1 engine's
output data. Except for Compute Challenge, all of the SHA-1 functions are applicable to small cash
systems, as will be shown later in this document.

The commands of the DS1961S that involve the SHA-1 engine are as follows:
� Read Authenticated Page
� Copy Scratchpad
� Compute Next Secret

While Read Authenticated Page and Compute Next Secret operate essentially the same as with the
DS1963S, the Copy Scratchpad command is very different from that used in other 1-Wire devices. In
order to copy data from the scratchpad to the data memory of the DS1961S, one must transmit a message
authentication code that has the device's secret as one of its input data components. As a consequence,
there is no need to embed any signature in the service record ("electronic purse") that resides in a
DS1961S. If the data made its way into the memory, it is authentic. With the DS1963S the situation is
different. Since anybody can write data to the memory of a DS1963S, there is a need to embed a signature
in the service record in order to verify its authenticity later. This difference between these devices affects
the data format and the complexity of function flows at the various stations in the system. The other
major factor is the smaller scratchpad size of the DS1961S, which requires four partial write and copy
steps to write a full 32-byte memory page.

WP1

3 of 68

APPLICATION SCENARIOS
The DS1963S and DS1961S can be used to implement two different types of small cash systems. In
scenario A, both the tokens and the coprocessor are DS1963S. In scenario B, the DS1963S functions as
coprocessor in a system that uses the DS1961S as tokens or carriers of electronic cash.

A dual-mode system that uses both types of tokens is possible. Revaluing and vending station will need
two DS1963S coprocessors. One coprocessor needs to be dedicated solely for DS1961S tokens and the
other one solely for DS1963S tokens. Using a single DS1963S as a coprocessor in a dual-mode system
would require a repeated reinstallation of the secret that is associated with memory page eight (the
signing secret). During this procedure the data that the secret is composed of would be exposed to
eavesdropping, compromising the system security and opening the door to an unauthorized refill of
tokens with money.

The main advantage of scenario B (DS1961S token) is the lower cost of the tokens. Due to the message
authentication code as part of the copy scratchpad protocol and the EEPROM write time, the communi-
cation of a debiting cycle takes longer than with a DS1963S token. The DS1961S is more vulnerable to
power problems in a touch environment, since it has no internal energy source. Although, due to
EEPROM technology, the number of write cycles that the DS1961S can achieve is lower than that of the
DS1963S, this is not a considerable limit for practical use. The DS1961S can carry up to three service
records or "purses" of a single service provider and is well suited for single-secret applications such as
building access, cost control at copy machines, and paying at the cafeteria within a company, or for
access to services at entertainment parks and private clubs.

The cost of a DS1963S is higher than a DS1961S. However, the DS1963S can accommodate up to seven
service records of different service providers, which generates more flexibility. If all suitable memory
pages are used, the price per service record of the DS1963S is much lower than that of a fully utilized
DS1961S. Thanks to its internal energy source, with the DS1963S a copy scratchpad function will always
complete, even if the electrical contact breaks. This is a clear advantage over the DS1961S particularly in
environments where speed is critical. For these reasons, the DS1963S is the prime candidate for city-sized
applications, such as local transit, parking garages, and independent local businesses that want to share
the token.

Regardless of the type of token used in the system, the physical appearance of the commissioning,
revaluing, and vending stations will be the same. Only the software and the format of the purse files
(service records) are different.

DATA DETAILS
Regarding their data structure, the tokens are treated the same way as any other memory iButton. Data is
organized in compliance with the 1-Wire File Structure. Using the 1-Wire File Structure, data is written
in the form of files to the memory pages, similar to the operation of a floppy disk. This allows multiple
files of different length and of different origin to reside in the same device. Using the 1-Wire File
Structure, files can be added, modified or deleted without any conflict, as long as all parties that use the
iButton strictly follow the same rules. The file structure specifies that the first page (page 0) of a memory
iButton is reserved for the initial section of the device directory, which contains data management infor-
mation and the entries of the first three data files that reside in the device. Table 1 shows the structure of a
directory with one file entry and includes a short explanation of each field. The device directory looks the
same for both types of tokens. For additional information on the file format see Dallas Semiconductor
Application Note 114, 1-Wire File Structure.

WP1

4 of 68

1-Wire Directory Structure With One File Entry Table 1
Offset Field Name Field Description

0 Length byte Format: 1 byte, binary; value = 1Dh
Purpose: requirement of the 1-Wire File Structure; precondition for data
integrity check
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: in conjunction with the CRC16 when reading iButton data files

1 Directory Mark Format: 1 byte, binary; value = AAh
Purpose: to allow identification of different iButton data formats
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: when formatting an iButton and to recognize whether and how an
iButton is formatted

2 Map Address Format: 1 byte, binary; value = 00h
Purpose: requirement of the 1-Wire File Structure
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: when formatting an iButton

3 Bitmap Control Format: 1 byte, binary; value = 80h
Purpose: requirement of the 1-Wire File Structure
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: when formatting an iButton

4 Local Bitmap Format: 4 bytes, binary
Purpose: requirement of the 1-Wire File Structure; allows the operating system
to find out whether and where there is room for more files or data.
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: when adding or expanding data files or deleting files

8 File name Format: 4 bytes, ASCII capitals or numbers
Purpose: requirement of the 1-Wire File Structure; to distinguish between
different files within the same iButton
Defined by: the application; see also Dallas Application Note 114
Relevant: to detect whether the iButton contains the file that is needed by the
application

12 File Extension Format: 1 byte, binary; value = 66h for purse files
Purpose: requirement of the 1-Wire File Structure; to distinguish between
different types of files
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: to recognize whether a data file is a monetary purse

13 Start Page Format: 1 byte, binary
Purpose: requirement of the 1-Wire File Structure; to compute the physical
starting address of the data file in the iButton memory
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: to read a data file from the iButton memory

14 # Pages Format: 1 byte, binary; value = 01h for purse files
Purpose: requirement of the 1-Wire File Structure
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: to know the length of a data file without reading all segments of a
multipage data file

15 Continuation Pointer Format: 1 byte, binary; value = 00h
Purpose: requirement of the 1-Wire File Structure; allows iButton data files to
be continued on any available memory page
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: to find and read all segments of a multipage data file or directory

16 Inverted CRC-16 Format: 2 bytes, binary
Purpose: requirement of the 1-Wire File Structure; for data integrity check
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: in conjunction with the Length byte when reading iButton data files

The purse file format of the DS1963S is shown in Table 2. The length byte, continuation pointer, and
CRC-16 work the same way as explained for the directory. The certificate type and algorithm field

WP1

5 of 68

identifies a particular data format within the purse file. Application Note 151 (see references) lists some
of the formats that have been defined. The next field is the Service Data Signature. Since writing to the
DS1963S is not restricted, the signature is the only means to verify the authenticity of the purse data. The
Monetary Units Code and Multiplier field is based on the ISO-4217 standard, which assigns 3-digit
decimal numbers to all existing currencies worldwide. A table of these codes can be downloaded from the
University of British Columbia (see references). This standard does not define, however, how the
currency codes are to be used in electronic media and whether the monetary value represents whole
currency units (e.g., dollars) or fractions (cents). This decision is left to the software designer.

In software examples that are available from Dallas Semiconductor, the Monetary Unit Code and
Multiplier (abbreviated "MUC") is constructed as follows: take the 3-digit decimal number that ISO-4217
has assigned to the currency and convert it into its binary equivalent. This determines the lower 10 bits of
the MUC. The upper six bits indicate whether the monetary value needs to be divided or multiplied and
what the divider or multiplier is, as shown in the following table.

Multiplier Code 000000 000001 000010 000011 100000 100001 100010 100011

Operation � 1 � 10 � 100 � 1000 � 1 � 10 � 100 � 1000

Example: The ISO code for the US-dollar is 840 decimal or 1101001000 binary. To represent a value in
US-dollars with a resolution of one cent (divide by 100), the resulting MUC is 100010 1101001000.
Written in its hexadecimal form 8B48h, the MUC is then used in a purse file.

The monetary value or "balance" must be represented in compliance with the MUC. Continuing the
example, a value of $12.34 is first converted into 1234 cents. Next the hexadecimal equivalent is com-
puted, which is 4D2h. Since the balance field is three bytes long, leading zeros are added, which results in
0004D2h, the value that can be used in the purse file.

The Transaction ID is a random number that makes each transaction as it occurred at the vending or
revaluing station unique. It is the precondition to prevent the so-called A-B-A attack, as described in
White Paper 3. This same transaction number concept is frequently used for online credit card receipts,
where the number appears as "authorization code".

DS1963S Purse File Format Table 2
Offset Field Name Field Description

0 Length byte Format: 1 byte, binary; value = 1Dh
Purpose: requirement of the 1-Wire File Structure; precondition for data
integrity check
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: in conjunction with the CRC16 when reading iButton data files

1 Certificate Type &
Algorithm

Format: 1 byte, binary; value = 01h
Purpose: to allow identification of different data formats in the token
Defined by: Dallas Application Note 151
Relevant: when using more than one data format with the same type of token in
the system.

2 Service Data
Signature

Format: 20 bytes, binary
Purpose: to verify authenticity of the service data (protect against fraud)
Defined by: input data components are defined by Dallas Application Note 151;
the algorithm for computing the 20-byte code is an ISO standard (SHA-1)
Relevant: when checking service data for authenticity

WP1

6 of 68

Offset Field Name Field Description
22 Monetary Units Code

& Multiplier
Format: 2 bytes, binary
Purpose: to allow identification of different currencies and currency sub-units
(e.. g., cents)
Defined by: The code to identify the currency is defined by the ISO 4217
standard; see also Dallas Application Note 151
Relevant: when using more than a single currency in the system

24 Monetary Balance Format: 3 bytes, binary number
Purpose: to indicate the amount of money that is stored in the service record
(purse)
Defined by: the application, see also Dallas Application Note 151
Relevant: when adding to and when spending money from the electronic purse

27 Transaction ID Format: 2 bytes, binary number
Purpose: to assign a unique number to every transaction
Defined by: the application
Relevant: to prevent some types of possible attacks on the system

29 Continuation Pointer Format: 1 byte, binary; value = 00h
Purpose: requirement of the 1-Wire File Structure; allows iButton data files to
be continued on any available memory page
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: to find and read all segments of a multipage data file or directory

30 Inverted CRC-16 Format: 2 bytes, binary
Purpose: requirement of the 1-Wire File Structure; for data integrity check
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: in conjunction with the Length byte when reading iButton data files

The least significant byte of a multibyte field is stored at the lower address.

The purse file format of the DS1961S (Table 3) is very similar to the format used with the DS1963S.
Since writing to the data memory of the DS1961S requires that one is able to compute the secret that is
installed in the device, there is no need to include a signature inside the service data. The purse file, for
this reason remains fairly short. Table 3 shows the details. A different certificate number indicates the dif-
ferent data format. The explanation of the other fields is the same as with the DS1963S purse file format.

DS1961S Purse File Format Table 3
Offset Field Name Field Description

0 Length byte Format: 1 byte, binary; value = either 0Dh (if A segment is valid) or 15h (if B
segment is valid)
Purpose: requirement of the 1-Wire File Structure; precondition for data
integrity check
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: in conjunction with the CRC16 when reading iButton data files

1 Certificate Type &
Algorithm

Format: 1 byte, binary; value = 03h
Purpose: to allow identification of different data formats in the token
Defined by: Dallas Application Note 151
Relevant: when using more than one data format with the same type of token in
the system.

2 Monetary Units Code
& Multiplier

Format: 2 bytes, binary
Purpose: to allow identification of different currencies and currency sub-units
(e.. g., cents)
Defined by: The code to identify the currency is defined by the ISO 4217
standard; see also Dallas Application Note 151
Relevant: when using more than a single currency in the system

WP1

7 of 68

Offset Field Name Field Description
4 Dummy Format: 4 bytes, binary; value = undefined

Purpose: to make the monetary balance begin at a quarter-page boundary
Defined by: Dallas Semiconductor
Relevant: in conjunction with single-purse A-B scheme, which stores the
current and the previous purse value in the purse file to safeguard against data
loss due to electrical power problems in a touch environment

8 Monetary Balance of
A segment

Format: 3 bytes, binary number
Purpose: to indicate the amount of money that is stored in the service record
(purse)
Defined by: the application, see also Dallas Application Note 151
Relevant: when adding to and when spending money from the electronic purse

11 Transaction ID of A
segment

Format: 2 bytes, binary number
Purpose: to assign a unique number to every monetary transaction
Defined by: the application
Relevant: to prevent some types of possible attacks on the system

13 Continuation Pointer
of A segment

Format: 1 byte, binary; value = 00h
Purpose: requirement of the 1-Wire File Structure; allows iButton data files to
be continued on any available memory page
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: to find and read all segments of a multipage data file or directory

14 Inverted CRC-16,
valid if the length

byte is 0Dh

Format: 2 bytes, binary
Purpose: requirement of the 1-Wire File Structure; for data integrity check
Defined by: 1-Wire File Structure; see Dallas Application Note 114
Relevant: in conjunction with the Length byte when reading iButton data files

16 Monetary Balance of
B segment

(see A segment)

19 Transaction ID of B
segment

(see A segment)

21 Continuation Pointer
of B segment

(see A segment)

22 Inverted CRC-16,
valid if the length

byte is 15h

(see A segment)

The least significant byte of a multibyte field is stored at the lower address.

Table 3 lists two data segments (A and B) that contain monetary information. The B segment is
introduced to increase data integrity in a touch-environment, where the electrical contact between token
and reader/writer is unreliable. A purse file is installed with the A-segment only. With the next
transaction, the B segment is added with a CRC16 that is computed over the higher (to be updated) length
byte. In case that there was an electrical problem when writing the B segment, then the A segment is still
valid, which is indicated by the low value of the length byte. Before the transaction is completed, the
length byte needs to be updated to reflect the validity of the B segment. Vice versa, if the B segment was
valid and the update of the A segment during another transaction fails, the data of the B segment is still
intact, which is indicated by the high value of the length byte. This A-B scheme has been tested and was
confirmed to be far superior in data integrity than using the A segment alone.

WP1

8 of 68

SCENARIO A: SECURITY CONCEPT (DS1963S Token)
In this scenario, the token can handle up to seven independent service records or purses, each with its
individual Authentication Secret. Instead of using the same Master Authentication Secret (MAS) for the
same purse in all tokens, each service record has its own Unique Authentication Secret (UAS). The MAS
is computed through a SHA-1 operation from a 47-byte authentication input secret. The UAS is computed
in another SHA-1 operation from the MAS, 32-byte binding data, page number of the purse or service
record, and the seven bytes of the token's ROM ID.

Since there is unrestricted write access to the token, a signature is embedded in the purse file to verify its
authenticity. The Master Signing Secret (MSS) required for generating and verifying the signature resides
only in the coprocessors. The MSS is computed through a SHA-1 operation from a 47-byte signing input
secret. For a more detailed description of all the parameters that are needed to compute the MAS and
MSS see Table 4.

Knowing MAS, binding data, purse page number, and the token’s ROM ID, the DS1963S coprocessor of
any vending or revaluing station can compute the UAS of any purse that belongs to the system. Once the
UAS is computed (assuming that the purse belongs to the system), one can
� verify whether that assumption was true, and if yes,
� verify the embedded signature of a purse
� generate a valid signature for a purse that belongs to the system

The verification of the purse involves comparing the SHA-1 result that the token has generated with a
Read Authenticated Page command to a SHA-1 result that the coprocessor has computed in a Validate
Data Page command. As a precaution against data replay attacks, the SHA-1 computation of the Read
Authenticated Page command includes a 3-byte challenge that is taken from the scratchpad of the token.
If this challenge consists of random data, the SHA-1 result will be different with every command
execution, despite the fact that the token is the same and data inside the token has not changed.

To verify the embedded signature of a purse, the coprocessor first computes a SHA-1 result from the
purse data, a 20-byte initial signature, the purse write-cycle counter, purse page number, seven bytes of
the token's ROM ID and a 3-byte signing challenge. If the coprocessor got the same 20-byte result as is
stored in the purse, the monetary value inside the purse is authentic.

SCENARIO A: ASSIGNMENTS AND PARAMETERS
A small cash system according to Scenario A uses DS1963S devices as coprocessors and as electronic
tokens. A coprocessor is needed at the commissioning station, the revaluing station and at every
vending/POS station. Three memory pages of the coprocessor are taken as
� Signing Page (coprocessor page 8, for technical reasons)
� Authentication Page (e. g., coprocessor page 9, arbitrary choice)
� Workspace Page (e. g., coprocessor page 10, arbitrary choice)

One of the token's memory pages is assigned as
� Token purse page (a page within range 9 to 15, defined when creating the purse file)

Scenario A uses several parameters or "system constants", as listed in Table 4. These parameters are
typically stored as constants in the application firmware, which is loaded into a secure microcontroller
and locked to prevent reading and disassembly.

WP1

9 of 68

Scenario A: Parameter List Table 4
Ref. # Parameter Name Description
SC32-1 Authentication

Input Secret [0-31]
The 32-byte system constant which is loaded into the memory page to
compute the initial Master Authentication Secret

SC15-1 Authentication
Input Secret [32-
46]

The 15-byte system constant which is loaded into the scratchpad of the
coprocessor to compute the initial Master Authentication Secret.

SC32-S Signing Input
Secret [0-31]

The 32-byte system constant which is loaded into the signing page of
the coprocessor before computing the Master Signing Secret (MSS).

SC15-S Signing Input
Secret [32-46]

The 15-byte system constant which is loaded into the scratchpad of the
coprocessor before computing the Master Signing Secret (MSS).

SC32-B Binding Data The 32-byte system constant which is loaded into the token when bind-
ing the MAS to the token creating the Unique Authentication Secret
(UAS). This constant is needed because the page data must be known.

SC7-B Partial Binding
Code

The 7-byte system constant which is loaded into the scratchpad of the
token before computing the Unique Authentication Secret (UAS). SC7-
B together with the purse page number and 7 bytes of the token's ROM
ID are used together with SC32-B to compute the UAS.

SC20-S Initial Signature The 20-byte system constant, which is used in lieu of a real signature
when computing the signature to be embedded in a purse file. This
constant is needed because the signature must be known.

SC3-S Signing Challenge The 3-byte system constant, which is loaded in lieu of a real challenge
into the scratchpad locations 20 to 22 before computing the signature
to be embedded in a purse file. This constant is needed because the
"challenge" must be known.

SCENARIO A: STEP DEFINITIONS
All activities that occur in this scenario can be described as individual steps that build on each other.
There are "initialization steps" (marked by the letter I in the step names) and "field steps" (marked by the
letter F). The Initialization steps are performed just once per service record or coprocessor and they occur
in a controlled environment. The Field steps are typically performed in an uncontrolled environment, i.e.,
at the vending or revaluing station. Table 5 lists all of these steps together with their titles. For a detailed
step description see Appendix A.

Scenario A: Step Definitions Table 5
Step Name Step Description
AI1 Installation of the Master Signing Secret (MSS) in the coprocessor
AI2 Installation of initial Master Authentication Secret (MAS) in the coprocessor
AI3 Installation of the initial Master Authentication Secret (MAS) in the token
AI4 Installation of Unique Authentication Secret for the selected purse page
AI5 Installation of a device file directory with an entry for the purse file in the token
AI6 Writing a zero-value purse file to the token (compute signature, write data, verify)
AF1 Installation of the purse's UAS as the secret of the workspace page of the coprocessor
AF2 Verify whether the purse belongs to the system
AF3 Verify whether the purse data is valid
AF4 Updating the purse file in the token (compute signature, write data)
AF5 Verify whether the purse file was written successfully to the same token

WP1

10 of 68

SCENARIO A: COPROCESSOR SETUP
A DS1963S is required as coprocessor at all token commissioning stations and vending stations. In
scenario A, the coprocessor needs to know two secrets, the Master Authentication Secret (MAS) and the
Master Signing Secret (MSS). The MSS is installed first in step AI1 followed by the MAS in step AI2.

To increase the system security, the MAS should be built from several partial secrets. Ideally, partial
secrets are installed by different people that only know their part of the secret. This way, if there is a
security leak, only a partial secret will be exposed and the security of the system is not compromised.
Working with partial secrets requires the repeated execution of step AI2. Coprocessors and tokens (in the
process of being commissioned) must be exposed to all partial secrets that are used in the system in the
same sequence. See section Scenario A: Notes for more details of this procedure. Since it is critical for
determining the validity of the purse's data, the Master Signing Secret should also be built from partial
secrets.

SCENARIO A: COMMISSIONING THE TOKEN
Before a DS1963S can function as a token, it needs to be "commissioned". This term combines all the
steps that are necessary to make a purse in the token a part of "the system", i.e., the environment of which
the token will become a member and in which it is supposed to work. Fresh from the factory, all the
DS1963S are the same, except for their unique 64-bit ROM IDs. The commissioning procedure teaches
them their Unique Authentication Secret (UAS) for the selected purse page, installs a device directory
(i.e., the file name that the system uses for the purse) and creates a purse file without money. After this
procedure, the device will be a token that is recognized as a member of the system, but it will not be good
for buying anything, since the purse is empty. The detailed descriptions of the steps referenced in this
section are found in Appendix A.

The commissioning of a token begins with the installation of the initial Master Authentication Secret of
the system in the token (AI3) as the secret of the page that will later store the purse. This step is typically
performed on a large number of tokens that are processed as a group or batch. If the system uses partial
secrets, then an additional, modified AI3 step is necessary. See section Scenario A: Notes for more
details.

Next the tokens need to learn their Unique authentication secrets and the purse files must be installed.
The Unique Authentication Secret is installed in step AI4 as the secret of the selected purse page. Step
AI5 installs the device directory with the purse file name. The final step AI6, installation of the purse file,
requires the assistance of a coprocessor that has all the partial authentication secrets installed, i. e., a
DS1963S that could as well be used in a vending or revaluing station. This step is fairly complex and re-
uses functions that also occur in the field. Now the purse in the token is ready to carry money, which it
receives at the revaluing station.

SCENARIO A: REVALUING THE TOKEN
Once a token is commissioned, its new purse file needs to be loaded with money at a revaluing station.
This is the only place where real money gets involved, either in the form of a coin- or bill-accepting unit
(off-line) or with an online connection to the banking network, just like a cash machine (ATM).
Assuming that the system-specific purse file exists in the token directory and that the revaluing station
knows how much money is to be added and that the station has access to that money, the following steps
will take place to transfer the cash into the purse:

WP1

11 of 68

The coprocessor inside the revaluing station computes the UAS of the purse page and installs it as the
secret of its workspace page (AF1). This enables the coprocessor to verify whether the purse belongs to
the system. Next the token receives a challenge, performs a Read Authenticated Page command on the
purse file, and generates a SHA-1 result, which the coprocessor then uses to verify whether the purse
belongs to the system (AF2). If the purse is confirmed as a member of the system, the authenticity of the
signature in the purse file is checked (AF3). If the signature is valid, a new signature for the updated
purse is computed and the new purse data is written to the token (AF4). As a special security measure, the
revaluing station then sends a new challenge to the token, reads the purse page again using the Read
Authenticated Page command, verifies (as in step AF2) the authenticity of the purse and double-checks
whether the value of the purse was updated (AF5). If everything worked correctly, the revaluing station
prints a receipt and the whole transaction is finished in a fraction of a second.

SCENARIO A: PAYING WITH THE TOKEN
The token is of little use without vending stations that accept the token instead of cash. Regarding the
processing of token data, the vending station and the revaluation station are almost exactly the same. By
selecting the merchandise, the customer tells the machine how much money is to be subtracted from the
purse. Next the token is presented to the machine where the following steps take place:

The vending station looks for the system-specific purse file in the token's directory. If the file is found,
the coprocessor inside the vending station computes the UAS of the purse page and installs it as the secret
of its workspace page (AF1). This enables the coprocessor to verify whether the purse belongs to the
system. Next the token receives a challenge, performs a Read Authenticated Page command on the purse
page, and generates a SHA-1 result, which the coprocessor then uses to verify whether the purse belongs
to the system (AF2). If the purse is confirmed as a member of the system, the authenticity of the signature
in the purse file is checked (AF3). If the signature is valid, and if the funds are sufficient for the purchase,
the purse file in the token is updated (AF4). Before releasing the goods, the vending station sends a new
challenge to the token, reads the purse page again using the Read Authenticated Page command, verifies
(as in step AF2) the authenticity of the purse and double-checks whether the value of the purse was
updated (AF5). If everything worked correctly, the customer gets access to the merchandise, which ends
the transaction.

SCENARIO A: NOTES
The sections Coprocessor Setup and Commissioning the Token recommend the use of partial secrets
when installing the Master Authentication Secret (see Application Note 152). Constructing the MAS from
partial secrets is essentially the same as repeating steps AI2 and AI3 with different starting conditions.
The use of partial secrets has no impact on AI4 or subsequent steps. There is no logical limit to the
number of partial secrets that can be used in a system.

To work with two partial secrets (instead of a single one), these are the additional steps to be performed
after the initial MAS is installed for the coprocessor (AI2) and the token (AI3):

Define a second 47-byte Authentication Input Secret SC32-2, SC15-2 (see also Table 4. "-2"
indicates that this is the second partial input secret; there could be a 3rd, 4th, etc.)

For the coprocessors to be deployed in the system:
After step AI2, perform a modified AI2 (=AI2') with the following differences:
Instead of SC32-1 use SC32-2.
Instead of SC15-1 use SC15-2.

WP1

12 of 68

Instead of Compute SHA/1st Secret use Compute SHA/Next Secret.
All other specifics remain the same as in AI2.

For the tokens to be deployed in the system:
After step AI3, perform a modified AI3 (=AI3') with the following differences:
Instead of SC32-1 use SC32-2.
Instead of SC15-1 use SC15-2.
Instead of Compute SHA/1st Secret use Compute SHA/Next Secret.

All other specifics remain the same as in AI3.

The section Coprocessor Setup also recommends the use of partial secrets when creating the Master
Signing Secret. Constructing the MSS from partial secrets is essentially the same as repeating step AI1
with different starting conditions. The use of partial secrets has no impact on AI2 or any subsequent steps.
There is no logical limit to the number of partial secrets that can be used in a system.

To work with two partial secrets (instead of a single one), these are the additional steps to be performed
after the initial MSS is installed for the coprocessor (AI1)

Define a second 47-byte Signing Input Secret SC32-S2, SC15-S2 (see also Table 4. "-S2" indicates
that this is the second partial Signing Input Secret; there could be a 3rd, 4th, etc.)

For the coprocessors to be deployed in the system:
After step AI1, perform a modified AI1 (=AI1') with the following differences:
Instead of SC32-S use SC32-S2.
Instead of SC15-S use SC15-S2.
Instead of Compute SHA/1st Secret use Compute SHA/Next Secret.

All other specifics remain the same as in AI1. The method of installing the MSS in the coprocessors has
no effect on the tokens.

Once tokens are deployed carrying a service record or purse file of a single service provider, the vacant
memory pages (any of the unused pages in the range of page 9 to page 15) can be used for additional
service records of other service providers. Page 8 should not be used for service records. See Appendix C
for a detailed explanation. To install the secret of another service provider perform steps AI3 and AI4 for
the selected page. The process of adding another file to the directory is similar to AI5. Instead of creating
a new directory (which would eliminate the first service record), one simply adds another file entry to the
existing directory. Writing the additional service record requires the same steps as writing the initial
service record (AI6), only the memory page number and file content are different.

For prototyping purposes, the DS1963S function as a coprocessor can be emulated by the host processor.
Revaluing stations or vending stations that use software instead of a coprocessor compromise the system
security, since the secret could be recovered from disassembled program code of any such station in the
system.

SCENARIO B: SECURITY CONCEPT (DS1961S Token)
This scenario is based on a single authentication secret. This limitation is set by the design of the
DS1961S, which can only store one secret. Instead of using the same secret in all tokens, each token
holds its own Unique Authentication Secret (UAS). The Master Authentication Secret (MAS) is
computed through a SHA-1 operation from a 47-byte authentication input secret. The UAS is computed

WP1

13 of 68

in another SHA-1 operation from the MAS, 32-byte binding data, the binding page number and seven
bytes of the token's ROM ID. For a more detailed description of these parameters see Table 6.

Knowing MAS, binding data, binding page number and the token's ROM ID, the DS1963S coprocessor
of any vending or revaluing station can compute the UAS of any token that belongs to the system. Once
the UAS is computed (assuming that the token belongs to the system), one can
� verify whether that assumption was true, and if yes,
� write to the token

The verification of the token involves comparing the SHA-1 result that the token has generated with a
Read Authenticated Page command to a SHA-1 result that the coprocessor has computed in an Authenti-
cate Host command. Writing to the token becomes possible by means of a SHA-1 result that the
coprocessor computes in a Sign Data Page command before the copy scratchpad command is issued to
the token. As a precaution against data replay attacks, the SHA-1 computation of the Read Authenticated
Page command includes a 3-byte challenge that is taken from the scratchpad of the token. If this
challenge consists of random data, the SHA-1 result will be different with every command execution,
despite the fact that the token is the same and data inside the token has not changed.

SCENARIO B: ASSIGNMENTS AND PARAMETERS
A small cash system according to Scenario B uses a DS1963S as coprocessor and DS1961S devices as
electronic tokens. A coprocessor is needed at the commissioning station, the revaluing station and at
every vending/POS station. Three memory pages of the coprocessor are taken as
� Signing Page (coprocessor page 8, for technical reasons)
� Authentication Page (e. g., coprocessor page 9, arbitrary choice)
� Workspace Page (e. g., coprocessor page 10, arbitrary choice)

One of the token's memory pages is assigned as
� Token binding page for MAS and UAS installation (e. g., token page 1, arbitrary choice)
The binding page is later used for the primary purse. Secondary purses can be installed in pages 2 and 3;
however, they share the same UAS.

Scenario B uses several parameters or "system constants", as listed in Table 6. These parameters are
typically stored as constants in the application firmware, which is loaded into a secure microcontroller
and locked to prevent reading and disassembly.

Scenario B: Parameter List Table 6
Ref. # Parameter Name Description
SC32-1 Authentication

Input Secret [0-31]
The 32-byte system constant which is loaded into the memory page to
compute the initial Master Authentication Secret

SC15-1 Authentication
Input Secret [32-
46]

The 15-byte system constant which is loaded into the scratchpad of the
coprocessor to compute the initial Master Authentication Secret. The
first four and the last three bytes of this constant must be FF because
the token uses FF bytes in these locations when computing the next
secret. The padding with 7 bytes FFh is needed to get the same SHA-1
input data as is used with the DS1961S.

SC8-1 Authentication
Input Secret [36-
43]

The 8-byte subset of SC15-1 which is loaded into the scratchpad of the
token to compute the initial Master Authentication Secret. This con-
stant is identical to bytes 5 to 12 of SC15-1.

WP1

14 of 68

Ref. # Parameter Name Description
SC1 Binding Page

Number
The token page number that is used when installing the Master
Authentication Secret (MAS) in the token and when binding the MAS
to the token creating the Unique Authentication Secret (UAS).

SC32-B Binding Data The 32-byte system constant which is loaded into the token when bind-
ing the MAS to the token creating the Unique Authentication Secret
(UAS). This constant is needed because the page data must be known.

SCENARIO B: STEP DEFINITIONS
All activities that occur in this scenario can be described as individual steps that build on each other.
There are "initialization steps" (marked by the letter I in the step names) and "field steps" (marked by the
letter F). The Initialization steps are performed just once per token or coprocessor and they occur in a
controlled environment. The Field steps are typically performed in an uncontrolled environment, i.e., at
the vending or revaluing station. Table 7 lists all of these steps together with their titles. For a detailed
step description see Appendix B.

Scenario B: Step Definitions Table 7
Step Name Step Description

BI1 Installation of an all-zero secret for the signing page of the coprocessor
BI2 Installation of the initial Master Authentication Secret (MAS) in the token
BI3 Installation of initial Master Authentication Secret (MAS) in the coprocessor
BI4 Installation of Unique Authentication Secret in token
BI5 Installation of a device file directory with an entry for the purse file in the token (includes

write verification)
BI6 Writing a zero-value purse file to the token (includes write verification)
BF1 Installation of the token's UAS as the secret of the workspace page and signing page of the

coprocessor
BF2 Verify whether the token belongs to the system
BF3 Updating the purse file in the token
BF4 Verify whether the purse file was written successfully to the same token

SCENARIO B: COPROCESSOR SETUP
A DS1963S is required as coprocessor at all token commissioning stations and vending stations. In
scenario B, the coprocessor needs to know just the Master Authentication Secret (MAS). This secret is
installed in one step only. See Appendix B, Step BI3.

To increase the system security, the MAS should be built from several partial secrets. Ideally, partial
secrets are installed by different people that only know their part of the secret (see Application Note 152).
This way, if there is a security leak, only a partial secret will be exposed and the security of the system is
not compromised. Working with partial secrets requires the repeated execution of step BI3. At any stage,
coprocessors and tokens (in the process of being commissioned) must physically move together from one
partial secret installation place to the next. See section Scenario B: Notes for more details of this
procedure.

WP1

15 of 68

SCENARIO B: COMMISSIONING THE TOKEN
Before a DS1961S can function as a token, it needs to be "commissioned". This term combines all the
steps that are necessary to make a token a part of "the system", i.e., the environment of which the token
will become a member and in which it is supposed to work. Fresh from the factory, all the DS1961S are
the same, except for their unique 64-bit ROM IDs. The commissioning procedure teaches them their
Unique Authentication Secret (UAS), installs a device directory (i. e., the file name that the system uses
for the purse) and creates a purse file without money. After this procedure, the device will be a token that
is recognized as a member of the system, but it will not be good for buying anything, since the purse is
empty. The detailed descriptions of the steps referenced in this section are found in Appendix B.

The commissioning of a token begins with the installation of an all-zero "secret" in an auxiliary DS1963S
coprocessor (step BI1). This step is required just once and the coprocessor can be used for commissioning
a large number of tokens afterwards. With the assistance of the auxiliary coprocessor (after step BI1), the
initial Master Authentication Secret of the system is installed in the token (BI2). This step is typically
performed on a large number of tokens that are processed as a group or batch. If the system uses partial
secrets, then an additional loops through the steps BI2 and BI3 are needed. See section Scenario B: Notes
for more details.

Next the tokens need to learn their Unique authentication secrets and the purse files must be installed.
These steps require the assistance of a coprocessor that has all the partial authentication secrets installed,
i.e., a DS1963S that could as well be used in a vending or revaluing station. The installation of the MAS
in the tokens must also have been completed. The Unique Authentication Secret is installed in step BI4.

The final token commissioning steps are fairly complex; they re-use functions that also occur in the field.
Step BI5 installs the device directory with the purse file name. The purse file itself is installed in step BI6,
immediately after BI5. Now the purse in the token is ready to carry money, which it receives at the
revaluing station.

SCENARIO B: REVALUING THE TOKEN
Once a token is commissioned, its purse file needs to be loaded with money at a revaluing station. This is
the only place where real money gets involved, either in the form of a coin- or bill-accepting unit (off-
line) or with an online connection to the banking network, just like a cash machine (ATM). Assuming
that the system-specific purse file exists in the token directory and that the revaluing station knows how
much money is to be added and that the station has access to that money, the following steps will take
place to transfer the cash into the purse:

The coprocessor inside the revaluing station computes the token's UAS and installs it as the secret of its
workspace page (BF1). This enables the coprocessor to verify whether the token belongs to the system.
As a preparation for writing to the purse file, the coprocessor installs the same UAS as the secret of its
signing page (BF1). Next the token receives a challenge, performs a Read Authenticated Page command
on the purse page, and generates a SHA-1 result, which the coprocessor then uses to verify whether the
token belongs to the system (BF2). If the token is confirmed as a member of the system, the purse file is
updated (BF3). As a special security measure, the revaluing station then sends a new challenge to the
token, reads the purse page again using the Read Authenticated Page command, verifies (as in step BF2)
the authenticity of the token and double-checks whether the value of the purse was updated (BF4). If
everything worked correctly, the revaluing station prints a receipt and the whole transaction is finished in
a fraction of a second.

WP1

16 of 68

SCENARIO B: PAYING WITH THE TOKEN
The token is of little use without vending stations that accept the token instead of cash. Regarding the
processing of token data, the vending station and the revaluation station are almost exactly the same. By
selecting the merchandise, the customer tells the machine how much money is to be subtracted from the
purse. Next the token is presented to the machine where the following steps take place:

The vending station looks for the system-specific purse file in the token's directory. If the file is found,
the coprocessor inside the vending station computes the token's UAS and installs it as the secret of its
workspace page (BF1). This enables the coprocessor to verify whether the token belongs to the system.
As a preparation for writing to the purse file, the coprocessor installs the same UAS as the secret of its
signing page (BF1). Next the token receives a challenge, performs a Read Authenticated Page command
on the purse page, and generates a SHA-1 result, which the coprocessor then uses to verify whether the
token belongs to the system (BF2). If the token is confirmed as a member of the system, and if the funds
are sufficient for the purchase, the purse file is updated (BF3). Before releasing the goods, the vending
station sends a new challenge to the token, reads the purse page again using the Read Authenticated Page
command, verifies (as in step BF2) the authenticity of the token and double-checks whether the value of
the purse was updated (BF4). If everything worked correctly, the customer gets access to the merchan-
dise, which ends the transaction.

SCENARIO B: NOTES
The sections Coprocessor Setup and Commissioning the Token recommend the use of partial secrets
when installing the Master Authentication Secret (see Application Note 152). Constructing the MAS from
partial secrets is essentially the same as repeating steps BI2 and BI3 with different starting conditions.
The use of partial secrets has no impact on BI4 or subsequent steps. There is no logical limit to the
number of partial secrets that can be used in a system.

To work with two partial secrets (instead of a single one), these are the additional steps to be performed
after the initial MAS is installed for the token (BI2) and the coprocessor (BI3):

Define a second 47-byte Authentication Input Secret SC32-2, SC15-2, SC8-2 (see also Table 6; as
with SC15-1 7 bytes of SC15-2 have to be FFh. SC8-2 is identical to bytes 5 to 12 of SC15-2.)

For the tokens to be deployed in the system:
The coprocessor used here must not yet have been subjected to BI3'.

After step BI2, perform a modified BI2 (=BI2') with the following differences:
Skip the step that writes eight 00 bytes to scratchpad.
Skip Load First Secret
Instead of SC32-1 use SC32-2.
Instead of SC8-1 use SC8-2.

All other specifics remain the same as in BI2.

For the coprocessors to be deployed in the system:
After step BI3, perform a modified BI3 (=BI3') with the following differences:
Instead of SC32-1 use SC32-2.
Instead of SC15-1 use SC15-2.
Instead of Compute SHA/1st Secret use Compute SHA/Next Secret.

All other specifics remain the same as in BI3.

WP1

17 of 68

Once tokens are deployed, the vacant memory pages can be used for additional purposes. The process of
adding another file to the directory is similar to BI5. Instead of creating a new directory, one simply adds
another file entry to the existing directory. Writing the additional file requires the same steps as writing a
purse file (BI6), only the memory page number, file extension and file content are different.

A secondary application of the token could be for access control. Since the data in the token cannot easily
be altered, it can store an access control file with a list of keywords that the lock checks against its own
list. Connected with each keyword should be an expiration date that the lock compares to its own real-
time clock. If one keyword matches and is not expired, access is granted. The electronic locks learn their
keywords at the time of installation and store them in otherwise unused memory sections of the DS1963S
inside the lock. Provisions should be made in the lock's firmware to read new keywords from specially
formatted DS1961S tokens, which can be checked for authenticity by challenge and response. The lock
should also maintain a list to store ROM IDs of lost tokens, to prevent unauthorized access before the
keywords are expired.

By design of the chip inside the DS1961S, writing to the register page requires the knowledge of the
secret that is stored in the chip. If the secret is directly written to the device or computed in one step, the
secret is known and can be write-protected. If the secret is computed from partial secrets and if there are
no security leaks, one does not know the secret. As a consequence, it is not possible to write to the
register page, e.g., to write-protect the secret. Although this might look like a disadvantage, in reality it is
the precondition for changing the secrets throughout a system and to recycle the tokens. This would not
be possible if the secret were write-protected.

For prototyping purposes, the DS1963S function as a coprocessor can be emulated by the host processor.
Revaluing stations or vending stations that use software instead of a coprocessor compromise the system
security, since the secret could be recovered from disassembled program code of any such station in the
system.

QUESTIONS AND ANSWERS
Are there things that I must not do to the token?
Yes, with a commissioned DS1961S token one must not use the commands Load First Secret and
Compute Next Secret. Each of these commands will affect the secret stored in the device, making it
impossible for the token to be recognized as part of the system. If the Master Authentication Secret of the
DS1961S is not constructed from partial secrets, the secret can be write-protected. Similarly, with a
commissioned DS1963S, one must not use the copy scratchpad command to install a new secret for an
existing purse file or service record. The token would no longer be accepted at the vending or revaluing
stations that use the particular purse file. If the signature in the purse file is computed as described in
Scenario A: Security Concept, even rewriting a valid purse file (without any changes to the data) will
make the purse file invalid, because writing increments the purse's page write cycle counter. These
security features reveal tampering with the device or its data.

When designing a small cash system, what shall I do with the ROM IDs of the tokens and the secret
write cycle counters (DS1963S)?
The token’s ROM ID is the key to reconstruct transaction history. For this reason, it should be used as the
customer's account number. This even works if multiple providers share a single DS1963S token because
they do not share databases. One could also append the purse page number to the ROM ID to make the
account number unique. In a system that buses the DS1963S as tokens, the write cycle counter value of
the secret that is associated with the purse page should be stored as well. A mismatch of the secret write

WP1

18 of 68

cycle counter in the token and in the account database could indicate a so-called competitor attack. See
White Paper 3 for more details.

What happens if I have messed-up the secret or the purse’s page write cycle counter?
The extent of the trouble depends on the provisions that the service provider has taken to recover from
such mishaps. If transactions are recorded using the token's ROM ID and transaction numbers, all the
transaction history can be reconstructed and the secret and the lost value can be restored in the same or
another token. The service provider may charge an administration fee for such recovery operations.

How can I see the balance of my electronic purse account?
The implementation of the balance view function depends on the service provider. The revaluing stations
should be designed to display the current balance. Vending stations should be able to display it too, if you
are not concerned that others can look into your electronic purse. More convenient online viewing, as it is
known from home banking, is possible as well. However, there may be a significant delay between a
transaction and its posting for online view, unless all vending and revaluing stations regularly dial in to
the central server (or are called by the server) to report the day’s transactions. If the service provider uses
a purse format as described in this document or discloses the chosen format, then you can read the
balance with the iButton Viewer, a program than can be downloaded for free from the iButton website.

Can I deposit money into my token through the Internet, just like home banking?
Technically, this is possible, but only if your token service provider supports home banking and revaluing
from home and allows you to obtain (download) and install the necessary software. You also need to buy
a 1-Wire adapter with a suitable probe for the token.

Does revaluing from home compromise the system security?
Not at all, because neither the authentication secret nor the signing secret is exposed at any given time.
The security of the SHA-1 algorithm is so high that even recording the communication with the token
will not deliver clues that could lead to discovering the secret. Even if the secret of one token were
known, this would not affect the whole system, because the token secrets are made unique (UAS).

Is there any risk of accidentally deleting purse files or making a purse invalid when reading the
token with the iButton Viewer?
As long as you stay away from functions that issue the commands Load First Secret and Compute Next
Secret (DS1961S) or copy scratchpad to a purse file or purse secret (DS1963S) you are safe. If the secret
of a DS1961S is write-protected, there is no risk to accidentally change the secret. In any case, read the
iButton Viewer User's manual thoroughly to know exactly what you are doing. The viewer does not know
whether the device you are evaluating contains any money.

How will the security be affected if I stay with the DS1963S purse file format, but use a DS1963L or
DS1993L as a token?
The DS1963L has page write-cycle counters, just like the DS1963S. However, the DS1963L has no built-
in SHA-1 engine or any secrets. Therefore, the authenticity of the device cannot be verified through
Challenge and Response. This opens the door emulation attacks, as explained in White Paper 3. The
DS1993L as a token is even weaker than the DS1963L. Since it has no page write cycle counters, one
could make a copy of the purse file, and as soon as the money is spent, restore the full purse, without
even needing an emulator.

WP1

19 of 68

I will move out of the area where I can pay with these electronic tokens, but I haven't spent all my
electronic cash. Can I get a refund?
This depends on the policy of the service provider. They should have the ability to decommission a token,
i.e., to empty the purse file and refund the unused portion of your money. The token itself remains usable.
It can be recycled and given to another user without any special processing. The steps of
decommissioning a token, as far as the token is concerned, are the same as at a vending station. The new
purse value is zero after the decomissioning is completed. Decommissioning a token at a revaluing station
is not recommended, since it would create an incentive to steal tokens and to convert them into cash.

How can I implement a dual-currency system?
There are two different ways to do this. One approach is to implement two purses, one for each currency.
The other approach is to use a single purse for a single currency and convert the amount whenever a
transaction in the other currency takes place. The two-purse approach is easier to implement, but has the
disadvantage that one has to put money into two purses. If one purse is empty, one cannot automatically
spend funds from the other purse. Filling purses with different currencies requires a dual-currency
revaluing station or different revaluing stations, most likely in different countries (e.g., at border cross-
ings). The one-purse approach is more convenient for the user. However, it requires smarter vending and
revaluing stations that can download exchange rates regularly, e.g., every night. Exchange rate services
are available on the Internet (see references).

Is there some ready-made software that I can start with?
Yes, there is, see references. Application Note 157 describes a SHA iButton API and pseudocode, which
is equivalent to the steps of Appendix A. A DS1963S SHA 1-Wire API Users Guide is found in
Application Note 156. Matching source code examples are included in the 1-Wire Public Domain Kit,
which can be downloaded for free from the iButton web site.

How secure are the tokens against various types of attacks?
Security aspects are discussed in Appendix C of this document and in White Paper 3.

REFERENCES
Data Sheet DS1963S: http://pdfserv.maxim-ic.com/arpdf/DS1963S.pdf
Data Sheet DS1961S: http://pdfserv.maxim-ic.com/arpdf/DS1961S.pdf
SHA-1 Secure Hash Standard: http://www.itl.nist.gov/fipspubs/fip180-1.htm
ISO-4217 Currency Codes: http://pacific.commerce.ubc.ca/xr/currency_table.html
Currency Exchange Rates: http://www.oanda.com/
White Paper 3, Why are 1-Wire SHA-1 Devices Secure?:

http://pdfserv.maxim-ic.com/arpdf/AppNotes/wp3.pdf
White Paper 4, Glossary of 1-Wire SHA-1 Terms: http://pdfserv.maxim-ic.com/arpdf/AppNotes/wp4.pdf
White Paper 8, 1-Wire SHA-1 Overview: http://pdfserv.maxim-ic.com/arpdf/AppNotes/WP8.pdf
App Note 114, 1-Wire File Structure: http://pdfserv.maxim-ic.com/arpdf/AppNotes/app114.pdf
App Note 151, Dallas Digital Monetary

Certificates: http://dbserv.maxim-ic.com/appnotes.cfm?appnote_number=827
App Note 152, SHA iButton Secrets and Challenges:

http://dbserv.maxim-ic.com/appnotes.cfm?appnote_number=835
App Note 156, DS1963S SHA 1-Wire API Users Guide:

http://pdfserv.maxim-ic.com/arpdf/AppNotes/app156.pdf
App Note 157, SHA iButton 1-Wire API Overview:

http://pdfserv.maxim-ic.com/arpdf/AppNotes/app157.pdf
iButton Viewer Download: http://www.ibutton.com/software/tmex/index.html
1-Wire Public Domain Kit download page: http://www.ibutton.com/software/1wire/wirekit.html

http://pdfserv.maxim-ic.com/arpdf/DS1963S.pdf
http://pdfserv.maxim-ic.com/arpdf/DS1961S.pdf
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://pacific.commerce.ubc.ca/xr/currency_table.html
http://www.oanda.com/
http://pdfserv.maxim-ic.com/arpdf/AppNotes/wp3.pdf
http://pdfserv.maxim-ic.com/arpdf/AppNotes/wp4.pdf
http://pdfserv.maxim-ic.com/arpdf/AppNotes/WP8.pdf
http://pdfserv.maxim-ic.com/arpdf/AppNotes/app114.pdf
http://dbserv.maxim-ic.com/appnotes.cfm?appnote_number=827
http://dbserv.maxim-ic.com/appnotes.cfm?appnote_number=835
http://pdfserv.maxim-ic.com/arpdf/AppNotes/app156.pdf
http://pdfserv.maxim-ic.com/arpdf/AppNotes/app157.pdf
http://www.ibutton.com/software/tmex/index.html
http://www.ibutton.com/software/1wire/wirekit.html

WP1

20 of 68

APPENDIX A

Step AI1

Title: Installation of the Master Signing Secret (MSS) in the coprocessor

Precondition:
� SC32-S is defined
� SC15-S is defined

Performed:
� When setting up the coprocessor for use in the system

Data Flow Diagram:

Coprocessor

Scratchpad Signing Page Sign. Page Secret

Scratchpad
Compute SHA

1st Secret

Scratchpad

All zero
secret

32

15

32

32

8

88

SC32-S

SC15-S

Master Signing Secret

+1

WC
#

+1

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Using a dummy starting address, erase the

scratchpad.
2) Using the starting address of the signing page,

write SC32-S to the scratchpad.
2) Verify correct scratchpad writing and copy

scratchpad data to signing page.
3) Fill scratchpad locations 8 to 22 with SC15-S.
4) Using the starting address of the signing page

issue Compute SHA/1st Secret.
5) Using the starting address of the secret of the

signing page, write 8 dummy bytes to the
scratchpad.

6) Using the starting address of the secret of the
signing page and a computed E/S byte, issue
the Copy Scratchpad command.

1) Using a dummy starting address, erase the
scratchpad.

WP1

21 of 68

Detail Notes:
Ref. # Purpose and Comments
1) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

2) To load the first 32 bytes of the Signing Input Secret into the Signing Page (page 8).
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

3) To load the remaining 15 bytes of the Signing Input Secret into the scratchpad.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

4) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and an all-zero secret.
The target address must point to a location within the Signing Page.

5) To select the secret of the Signing Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Signing Page. At least 1 dummy
byte needs to be sent to the scratchpad before issuing a reset pulse.

6) To make the SHA-1 result the secret of the Signing Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

DS1963S Secret Address Assignments:

Description Address Range
Secret of Page 8 0200h to 0207h
Secret of Page 9 0208h to 020Fh
Secret of Page 10 0210h to 0217h
Secret of Page 11 0218h to 021Fh
Secret of Page 12 0220h to 0227h
Secret of Page 13 0228h to 022Fh
Secret of Page 14 0230h to 0237h
Secret of Page 15 0238h to 023Fh

Step AI2

Title: Installation of initial Master Authentication Secret (MAS) in the coprocessor

Precondition:
� SC32-1 is defined
� SC15-1 is defined

Performed:
� When setting up the coprocessor for use in the system

WP1

22 of 68

Data Flow Diagram:

Coprocessor

Scratchpad Authent. Page Auth. Page Secret

Scratchpad
Compute SHA

1st Secret

Scratchpad

All zero
secret

32

15

32

32

8

88

SC32-1

SC15-1

Master Authentication Secret

+1

WC
#

+1

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Using a dummy starting address, erase the

scratchpad.
2) Using the starting address of the authentication

page, write SC32-1 to the scratchpad.
2) Verify correct scratchpad writing and copy

scratchpad data to authentication page.
3) Fill scratchpad locations 8 to 22 with SC15-1.
4) Using the starting address of the authentication

page issue Compute SHA/1st Secret.
5) Using the starting address of the secret of the

authentication page, write 8 dummy bytes to the
scratchpad.

6) Using the starting address of the secret of the
authentication page and a computed E/S byte,
issue the Copy Scratchpad command.

1) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

2) To load the first 32 bytes of the Authentication Input Secret into the Authentication Page.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

3) To load the remaining 15 bytes of the Authentication Input Secret into the scratchpad.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

4) To compute a SHA-1 result from the content of the Authentication Page, 15 bytes of known scratchpad
data and an all-zero secret.
The target address must point to a location within the Authentication Page.

5) To select the secret of the Authentication Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Authentication Page. At least one
dummy byte needs to be sent to the scratchpad before issuing a reset pulse.

WP1

23 of 68

Ref. # Purpose and Comments
6) To make the SHA-1 result the secret of the Authentication Page.

Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

DS1963S Secret Address Assignments: (see step AI1)

Step AI3

Title: Installation of initial Master Authentication Secret (MAS) with the purse page of the token

Precondition:
� SC32-1 is defined
� SC15-1 is defined
� The purse page number is defined

Performed:
� When setting up the token for use in the system

Data Flow Diagram:

Token

Scratchpad Purse Page Purse Page Secret

Scratchpad
Compute SHA

1st Secret

Scratchpad

All zero
secret

32

15

32

32

8

88

SC32-1

SC15-1

Master Authentication Secret

+1

WC
#

+1

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Using a dummy starting address, erase the

scratchpad.
2) Using the starting address of the purse page,

write SC32-1 to the scratchpad.
2) Verify correct scratchpad writing and copy

scratchpad data to purse page.
3) Fill scratchpad locations 8 to 22 with SC15-1.
4) Using the starting address of the purse page

issue Compute SHA/1st Secret.

WP1

24 of 68

Ref. # DS1963S Coprocessor DS1963S Token
5) Using the starting address of the secret of the

purse page, write 8 dummy bytes to the
scratchpad.

6) Using the starting address of the secret of the
purse page and a computed E/S byte, issue the
Copy Scratchpad command.

1) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

2) To load the first 32 bytes of the Authentication Input Secret into the Purse Page.
Data is first written to the scratchpad, verified (e. g., read back) and then copied to the memory page.
With unused tokens, the purse page number can be anywhere from page 9 to page 15. If a purse page
already exists in the token, a new purse can be installed in an unused page. If the status of the token is
unknown, first check the device directory to identify a vacant page before installing a new purse.

3) To load the remaining 15 bytes of the Authentication Input Secret into the scratchpad.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

4) To compute a SHA-1 result from the content of the Purse Page, 15 bytes of known scratchpad data
and an all-zero secret.
The target address must point to a location within the Purse Page.

5) To select the secret of the Purse Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Purse Page. At least one dummy
byte needs to be sent to the scratchpad before issuing a reset pulse.

6) To make the SHA-1 result the secret of the Purse Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

DS1963S Purse Page Address Assignments:

Description Address Range
Page 9 0120h to 013Fh
Page 10 0140h to 015Fh
Page 11 0160h to 017Fh
Page 12 0180h to 019Fh
Page 13 01A0h to 01BFh
Page 14 01C0h to 01DFh
Page 15 01E0h to 01FFh

WP1

25 of 68

Step AI4

Title: Installation of the Unique Authentication Secret (UAS) with the purse page of the token. This step
is also called "Binding the secret to the token".

Precondition:
� AI3 was performed successfully.
� SC32-B is defined
� SC7-B is defined
� The purse page number is defined

Performed:
� Before installing a purse file in the token

Data Flow Diagram:

Token

Scratchpad Purse Page Purse Page Secret

Scratchpad
Compute SHA

Next Secret

Scratchpad

32

15

32

32

8

88

SC32-B

Unique Authentication Secret

+1

WC
#

+1

WC
#

� SC7-B
� Token

Purse
Page #

� Token
ROM ID
(w/o CRC)

Master Auth.
Secret from
AI3

ROM ID

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Read ROM ID of token; verify correct reading
2) Using the starting address of the purse page,

write SC32-B to the scratchpad.
2) Verify correct scratchpad writing and copy

scratchpad data to purse page.
3) Fill scratchpad locations 8 to 22 with first 4 bytes

of SC7-B, purse page number, token ROM ID
(without CRC), 3 remaining bytes of SC7-B

4) Using the starting address of the purse page
issue Compute SHA/Next Secret.

5) Using the starting address of the secret of the
purse page, write 8 dummy bytes to the
scratchpad.

WP1

26 of 68

Ref. # DS1963S Coprocessor DS1963S Token
6) Using the starting address of the secret of the

purse page and a computed E/S byte, issue the
Copy Scratchpad command.

Detail Notes:
Ref. # Purpose and Comments
1) To create a secret that is unique to a particular device (token).

The ROM ID of the token is used as input to the SHA-1 computation.
2) To load the 32 bytes Binding Data into the Purse Page.

Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
3) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used

for the purse, and constant data.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b). Page number and ROM ID are also referred to as Binding Code.

4) To compute a SHA-1 result from the content of the Purse Page, 15 bytes of known scratchpad data
and the current secret of the purse page.
The target address must point to a location within the Purse Page.

5) To select the secret of the Purse Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Purse Page. At least one dummy
byte needs to be sent to the scratchpad before issuing a reset pulse.

6) To make the SHA-1 result the new secret of the Purse Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

DS1963S Purse Page Address Assignments: (see step AI3)

Step AI5

Title: Installation of a device file directory with an entry for the purse file in the token.

Precondition:
� The file name of the purse file to be created is defined
� The page number (location) of the purse file to be created (length = 1 page) is defined
� A device directory has not yet been created in the token.

Performed:
� When initializing (commissioning) a token for use in the application.

Data Flow Diagram:

Token

Scratchpad Directory PageBuffer

Buffer

len DM MA BC Local BM File Name FX SP #P CP CRC\ (not used)

WP1

27 of 68

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Using a dummy starting address, erase the

scratchpad.
A

2)

Using the starting address of page 0, write to
scratchpad the initialization string of a device
directory (see AN114) with the entry of the purse
file (name, page #, length).

2) Verify correct scratchpad writing and copy
scratchpad to memory.

3) Read the directory page data from the token.
3) Compare the directory page data read from the

token to the expected data. If the data doesn't
match, go to A.

Detail Notes:
Ref. # Purpose and Comments
1) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

The target address issued is not relevant; any value is accepted.
2) To install a file directory in the Directory Page (page 0).

See Table 1 for the directory format. Data is first written to the scratchpad, verified (e.g., read back)
and then copied to the memory page. This description assumes that the token is unused, i. e., no
service record exists. Additional service records or purses may be installed later. The device supports a
total of 7 service records. When installing an additional purse or service record, the data for the
directory page is created by first reading the existing (potentially multi-page) directory and adding
another file entry to it. This always affects the last page of the device directory and may extend the
directory by one partially filled page. See AN114 for the device directory format and definitions. Every
additional service record requires the installation of a service-specific Master Authentication Secret and
Unique Authentication Secret with the new record in the token (steps AI3, AI4).

3) To verify whether the directory was installed properly.
If necessary, the directory installation is repeated.

Step AI6

Title: Writing a zero-value purse file to the token

Precondition:
� AI4 was performed successfully.
� AI5 was performed successfully.
� Name and location of the purse file are known (from AI5).
� The format and contents of the zero-value purse file are known.

Performed:
� Immediately before releasing the token for use in the application.

WP1

28 of 68

Data Flow Diagram:

Buffer 2

len CT SC20-S CP 0000TA. #0-BalanceMUC
0-value
purse file

Buffer 1

len CT New Signature CP CRC\TA. #BalanceMUC

Scratchpad
Compute SHA

Sign Data Page
15

32

20

8

Buffer 2
+1

Scratchpad Signing Page Sign. Page Secret
32 WC

#
WC

#

� Incr. Token
Purse WC#

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

� SC3-S

Master Signing
Secret from AI1

Coprocessor

Scratchpad

Compute CRC

20

32

Buffer 2

len CT SC20-S CP 0000TA. #0-BalanceMUC
0-value
purse file

Token

Scratchpad Purse Page Purse Page Secret
32 32Buffer 1

+1

WC
#

WC
#

WP1

29 of 68

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Perform step AF1 to install the purse page's Unique Authentication Secret as the

secret of the workspace page of the coprocessor.
2) Perform step AF2 to check whether the purse page's secret is valid in the system.
3) Create the data of a zero-value purse file using

SC20-S as embedded signature and 00-bytes
as page CRC

4) Using the starting address of the signing page,
write the zero-value purse file to the scratchpad.

4) Verify correct scratchpad writing and copy
scratchpad data to signing page.

5) Write to scratchpad locations 8 to 22: (data page
address don't care) incremented token purse
page write cycle count, token purse page
number, token ROM ID (without CRC), SC3-S.

6) Using the starting address of the signing page
issue Compute SHA/Sign Data Page. Now the
scratchpad locations 8 to 27 contain the SHA-1
result which serves as a signature of the new
purse.

7) Take the data as written to the signing page and
replace SC20-S with the computed signature
from the scratchpad of the coprocessor.

7) Replace the all-zero CRC with a computed CRC
according to the rules specified in AN114. The
resulting data is the updated and formatted
purse file for the token.

8) Using the starting address of the purse file in the
token, write the new purse file to the scratchpad
of the token.

8) Verify correct scratchpad writing and copy
scratchpad data to purse page.

9) Perform step AF5 to verify successful installation of the zero-value purse file in the
token that it was computed for.

Detail Notes:
Ref. # Purpose and Comments
1) To prepare for the verification of the purse page's unique secret.

If the token does not belong to the system, the verification will fail.
2) To verify whether the secret with the purse page in the token follows the rules that were defined for the

application.
It is assumed that the purse's secret (UAS) has been installed and that the purse file has an entry in
the device directory.

3) To prepare the creation of a valid (though empty) purse file for the particular token.
See Table 2 for the purse file format. For simplicity, the CRC16 at the end of the purse is replaced by
zeros.

4) To load the zero-value purse file with embedded initial signature into the Signing Page (page 8).
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

5) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used
for the purse, the incremented write-cycle counter of the purse page, and the Signing Challenge.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b). The token ROM ID and purse page write cycle count were obtained in steps AF1, AF2.

6) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and the secret of the signing page.
The target address must point to a location within the Signing Page. The SHA-1 result will be found in
the scratchpad of the coprocessor.

WP1

30 of 68

Ref. # Purpose and Comments
7) To create the purse file for the token with embedded personalized signature and valid CRC16.

The purse file has to meet the formal requirements of the 1-Wire File Structure.
8) To write the purse file to the purse page in the token.

Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
9) To verify whether token was not swapped before the purse file was written to the token.

If the token was swapped, the verification will fail. The signature in the purse file is only valid in the
particular token and memory page with the write cycle count it was computed for.

Step AF1

Title: Installation of the purse's UAS as the secret of the workspace page of the coprocessor

Precondition:
� AI2 was performed successfully on the coprocessor
� AI4 was performed successfully
� The purse page number to be used in this and the following steps is known.

Performed:
� Preparation for token purse page authentication

Data Flow Diagram:

Token

ROM ID

Scratchpad
Compute SHA

Next Secret

32

15

32

8

8

8

SC32-B

Unique Authentication Secret

+1

Scratchpad Authent. Page Auth. Page Secret
32 WC

#
WC

#

� SC7-B
� Token

Purse
Page #

� Token
ROM ID
(w/o CRC)

Master Auth.
Secret from
AI2

Coprocessor

Scratchpad Workspace Page WS. Page SecretWC
#

WC
#

+1

WP1

31 of 68

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Read ROM ID of token; verify correct reading.
2) Using a dummy starting address, erase the

scratchpad.
2) Using a dummy starting address, erase the

scratchpad.
3) Using the starting address of the authentication

page, write SC32-B to the scratchpad.
3) Verify correct scratchpad writing and copy

scratchpad data to authentication page.
4) Fill scratchpad locations 8 to 22 with first 4 bytes

of SC7-B, token purse page number, token
ROM ID (without CRC), 3 remaining bytes of
SC7-B

5) Using the starting address of the authentication
page issue Compute SHA/Next Secret.

6) Using the starting address of the secret of the
workspace page, write 8 dummy bytes to the
scratchpad.

7) Using the starting address of the secret of the
workspace page and a computed E/S byte,
issue the Copy Scratchpad command.

2) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To prepare computing the unique secret of the purse page.

The ROM ID of the token is used as input to the SHA-1 computation.
2) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

3) To load the 32 bytes Binding Data into the Authentication Page.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

4) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used
for the purse, and constant data.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

5) To compute the unique authentication secret (UAS) of the particular purse.
The target address must point to a location within the Authentication Page.

6) To select the secret of the Workspace Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Workspace Page. At least one
dummy byte needs to be sent to the scratchpad before issuing a reset pulse.

7) To install the UAS as the secret of the Workspace Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

WP1

32 of 68

Step AF2

Title: Verify whether the purse page's secret is valid in the system

Precondition:
� AF1 was performed successfully
� AI6 or AF4 was performed successfully
� The purse page number to be used in this and the following steps is known.

Performed:
� Before checking the purse data

Data Flow Diagram:

Token

Purse Page Purse Page Secret

Scratchpad
Read Authen-
ticated Page

Scratchpad

3

32

20

4

8

WC
#

WC
#

3-Byte Token
Challenge

Unique Auth.
Secret from
AI4

ROM ID Page #

1

7

Scratchpad
Validate Data

Page

32

15

32

20

8

Purse Page
Data

+1

Scratchpad Workspace Page WS. Page Secret
32 WC

#
WC

#

� Token
Challenge

� Token
Purse WC#

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

Unique Auth.
Secret from
AF1

Coprocessor

Scratchpad Compare

Match = Page Authen-
tication Test passed

2020

WP1

33 of 68

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Write a 3-byte random number to scratchpad

locations 20 to 22. (The page address used is
not relevant.) This number will be used as
challenge with the next command.

1) Perform a Read Authenticated Page Command
using the starting address of the page that
contains the purse file. Error-check and save the
page data and page write cycle counter value.

1) Read the SHA-1 result from the scratchpad and
save it in a buffer.

2) Using a dummy starting address, erase the
scratchpad.

3) Using the starting address of the workspace
page, write the page data read from the token to
the scratchpad.

3) Verify correct scratchpad writing and copy
scratchpad data to workspace page.

4) Write to scratchpad locations 8 to 22: (data page
address don't care) token purse page write cycle
count, token purse page number, token ROM ID
(without CRC), the same random number that
was used with Read Authenticated Page.

5) Using the starting address of the workspace
page issue the Validate Data Page command.

5) Take the SHA-1 result from the Read
Authenticated Page command and use it with
the Match Scratchpad command. If this
command results in AAh pattern, the SHA
results did match, confirming that the purse
pages secret is valid in the system.

2) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To read the purse page including write cycle counter.

To obtain a SHA-1 result from the token based on a 3-byte challenge, purse data, token ROM ID,
Purse Page number, purse page write cycle count, and UAS of the purse.
Using a random challenge generates different SHA-1 results from otherwise identical input data. Only
the legitimate token can perform the correct SHA-1 computation.

2) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.
To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

3) To load the 32 bytes Purse Data into the Workspace Page.
This is a precondition for re-computing the SHA-1 result that was read from the token. Data is first
written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

4) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used
for the purse, the purse write-cycle counter, and the challenge that was used when reading the purse.
This is a precondition for re-computing the SHA-1 result that was read from the token. The target
address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x xxx0 1000b).

5) To re-compute the SHA-1 result that was read from the token.
To compare the SHA-1 result from the token to the one computed in the coprocessor.
The target address must point to a location within the Workspace Page. If both SHA-1 results match,
the secret of the purse was computed according to the rules that were defined for the application. This
is the evidence that the purse belongs to the system.

WP1

34 of 68

Step AF3

Title: Verify whether the signature embedded in the purse is valid

Precondition:
� AF2 was performed successfully immediately prior to this step.

Performed:
� Before updating the purse

Data Flow Diagram:

Buffer 1

len CT Signature CP CRC\TA. #BalanceMUCPurse data as
read in AF2

Buffer 2

len CT CP CRC\TA. #BalanceMUC

SC20-S 0000

Scratchpad
Compute SHA

Sign Data Page

32

15

32

20

8

Buffer 2
+1

Scratchpad Signing Page Sign. Page Secret
32 WC

#
WC

#

� Token
Purse WC#

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

� SC3-S

Master Signing
Secret from AI1

Coprocessor

Scratchpad Compare

Match = Purse File
Signature Test passed

2020

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Take the purse file read in the previous step,

replace the embedded signature with SC20-S,
and replace the CRC16 at the end of the purse
file with all zeros.

2) Using the starting address of the signing page,
write the modified purse file to the scratchpad.

WP1

35 of 68

Ref. # DS1963S Coprocessor DS1963S Token
2) Verify correct scratchpad writing and copy

scratchpad data to signing page.
3) Write to scratchpad locations 8 to 22: (data page

address don't care) token purse page write cycle
count, token purse page number, token ROM ID
(without CRC), SC3-S.

4) Using the starting address of the signing page
issue the Sign Data Page command.

5) Use the Match scratchpad command to compare
the SHA result found in the scratchpad of the
coprocessor (locations 8 to 22) to the one that
was embedded in the purse file read from the
token. If the SHA-1 results match, the purse
data is authentic.

6) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To prepare checking the validity of the signature embedded in the purse file of the particular token.

The signature needs to be replaced by the initial signature for verifying the embedded signature.
2) To load the purse file with embedded initial signature into the Signing Page (page 8).

Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
3) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used

for the purse, the current write-cycle counter of the purse page, and the Signing Challenge.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

4) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and the secret of the signing page.
The target address must point to a location within the Signing Page. The SHA-1 result will be found in
the scratchpad of the coprocessor. It should match the embedded signature of the purse file.

5) To check whether the embedded signature and the newly computed signature are identical; a match
confirms that the purse file is valid and belongs to the particular token.
Using the Match Scratchpad command is more efficient than reading the SHA-1 result and then
comparing it in the host. A valid signature is assumed to imply a valid data structure in the purse file.

6) To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

Step AF4

Title: Updating the purse file in the token

Precondition:
� AF3 was performed successfully prior to this step
� The new purse value has been determined.
� The signing page of the coprocessor contains the purse data as of step AF3
� There was no write access to the purse page in the token since the purse was last read.

Performed:
� Precondition for releasing the purchased goods

WP1

36 of 68

Data Flow Diagram:

Buffer 2

len CT SC20-S CP 0000TA. #BalanceMUC
data from
signing
page

Buffer 1

len CT New Signature CP CRC\TA. #BalanceMUC

Scratchpad
Compute SHA

Sign Data Page

5

15

32

20

8

New bal-
ance, TA. #

+1

Scratchpad Signing Page Sign. Page Secret
5 WC

#
WC

#

� Incr. Token
Purse WC#

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

� SC3-S

Master Signing
Secret from AI1

Coprocessor

Scratchpad

Compute CRC

20

Token

Scratchpad Purse Page Purse Page Secret
32 32Buffer 1

+1

WC
#

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Using the appropriate starting address within the

signing page, write to the scratchpad the
sections of the purse data that will change (i. e.,
balance, transaction #).

1) Verify correct scratchpad writing and copy
scratchpad data to signing page.

2) Write to scratchpad locations 8 to 22: (data page
address don't care) incremented token purse
page write cycle count, token purse page
number, token ROM ID (without CRC), SC3-S.

WP1

37 of 68

Ref. # DS1963S Coprocessor DS1963S Token
3) Using the starting address of the signing page

issue Compute SHA/Sign Data Page. Now the
scratchpad locations 8 to 27 contain the SHA-1
result which serves as a signature of the
updated purse.

4) Read the data from the signing page and
replace the embedded SC20-S with the
computed signature from the scratchpad of the
coprocessor.

4) Replace the all-zero CRC with a computed CRC
according to the rules specified in AN114. The
resulting data is the updated and formatted
purse file for the token.

5) Using the starting address of the purse file in the
token, write the updated purse file to the
scratchpad of the token.

5) Verify correct scratchpad writing and copy
scratchpad data to purse page.

6) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To update the purse with the after-purchase value and a new transaction ID.

Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
2) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used

for the purse, the incremented write-cycle counter of the purse page, and the Signing Challenge.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

3) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and the secret of the signing page.
The target address must point to a location within the Signing Page. The SHA-1 result will be found in
the scratchpad of the coprocessor.

4) To create the purse file for the token with embedded personalized signature and valid CRC16.
The purse file has to meet the formal requirements of the 1-Wire File Structure.

5) To write the purse file to the purse page in the token.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

6) To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

Step AF5

Title: Verify whether the updated purse file was written successfully to the same token that was read
before.

Precondition:
� AF4 was performed successfully
� The expected content of the purse file is known.

Performed:
� Immediately before dispensing goods

WP1

38 of 68

Data Flow Diagram:

Token

Purse Page Purse Page Secret

Scratchpad
Read Authen-
ticated Page

Scratchpad

3

32

20

4

8

WC
#

WC
#

3-Byte Token
Challenge

Unique Auth.
Secret from
AI4

ROM ID Page #

1

7

Scratchpad
Validate Data

Page

32

15

32

20

8

Purse Page
Data

+1

Scratchpad Workspace Page WS. Page Secret
32 WC

#
WC

#

� Token
Challenge

� Token
Purse WC#

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

Unique Auth.
Secret from
AF1

Coprocessor

Scratchpad Compare
Match = Page Authen-
tication Test passed

2020

Purse Page
Data Compare

Buffer 1 (data
from AF4)

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Write a 3-byte random number to scratchpad

locations 20 to 22. (The page address used is
not relevant.) This number will be used as
challenge with the next command.

1) Perform a Read Authenticated Page Command
using the starting address of the page that
contains the purse file. Error-check and save the
page data and page write cycle counter value.

1) Read the SHA-1 result from the scratchpad and
save it in a buffer.

WP1

39 of 68

Ref. # DS1963S Coprocessor DS1963S Token
2) Using the starting address of the workspace

page, write the page data read from the token to
the scratchpad.

2) Verify correct scratchpad writing and copy
scratchpad data to workspace page.

3) Write to scratchpad locations 8 to 22: (data page
address don't care) token purse page write cycle
count, token purse page number, token ROM ID
(without CRC), the same random number that
was used with Read Authenticated Page.

4) Using the starting address of the workspace
page issue the Validate Data Page command.

4) Take the SHA-1 result from the Read
Authenticated Page command and use it with
the Match Scratchpad command. If this
command results in AAh pattern, the SHA
results did match, confirming that the purse
page's secret is valid in the system.

5) Compare the data read from the token to the
expected purse file data. If it is the same token
as before, but the data doesn't match, repeat the
token writing steps of AF4 (or AI6, respectively).

Detail Notes:
Ref. # Purpose and Comments
1) To read the purse page including write cycle counter.

To obtain a SHA-1 result from the token based on a 3-byte challenge, purse data, token ROM ID,
Purse Page number, purse page write cycle count, and UAS of the purse.
Using a random challenge generates different SHA-1 results from otherwise identical input data. Only
the legitimate token can perform the correct SHA-1 computation.

2) To load the 32 bytes Purse Data into the Workspace Page.
This is a precondition for re-computing the SHA-1 result that was read from the token. Data is first
written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

3) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used
for the purse, the purse write-cycle counter, and the challenge that was used when reading the purse.
This is a precondition for re-computing the SHA-1 result that was read from the token. The target
address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x xxx0 1000b).

4) To re-compute the SHA-1 result that was read from the token.
To compare the SHA-1 result from the token to the one computed in the coprocessor.
The target address must point to a location within the Workspace Page. If both SHA-1 results match,
the secret of the purse was computed according to the rules that were defined for the application. This
is the evidence that the purse belongs to the system.

5) To verify whether the updated purse file (after-purchase value) was actually written to the token.
From the previous step (AF4) the host still knows the expected new purse data. Only if the purse was
updated will the merchandise be released.

WP1

40 of 68

APPENDIX B

Step BI1

Title: Installation of an all-zero secret for the signing page of the coprocessor

Precondition:
� none

Performed:
� Before installing the initial Master Authentication Secret in a token

Data Flow Diagram:

Coprocessor

Scratchpad Signing Page Sign. Page Secret
88 bytes 00 WC

#

+1

WC
#

Set HIDE Flag

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Using a dummy starting address, erase the

scratchpad.
2) Using the starting address of any data memory

page (page number 0 to 15) write eight 00-bytes
to the scratchpad.

2) Verify correct scratchpad writing.
3) Remove the coprocessor from its socket and

reinsert it after a few seconds.
4) Using the starting address of the signing page

secret, write eight dummy bytes to the
scratchpad.

5) Using the starting address of the signing page
secret and a computed E/S byte, issue the Copy
Scratchpad command.

1) Using a dummy starting address, erase the
scratchpad.

WP1

41 of 68

Detail Notes:
Ref. # Purpose and Comments
1) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

2) To prepare the installation of a loaded (not computed) secret in the coprocessor.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
The compute 1st secret function of the coprocessor uses an all-zero secret to start with; the DS1961S
token can load anything as the first secret. For simplicity, the initialization of the token is chosen to
comply with the DS1963S scheme. As a consequence, the coprocessor needs to have an all-zero
secret for the signing page to compute the SHA-1 result that is required by the token to write the
authentication input secret to the binding page.

3) To set the HIDE flag.
The HIDE flag must be set to copy data from the scratchpad to a secret. If the DS1963S is located
behind a DS2409 MicroLAN Coupler, it is not necessary to remove the device from the socket to set
the HIDE flag. Instead, use the DS2409's Discharge Lines command. This generates a Power-On-
Reset for the DS1963S, which sets the HIDE flag, using only standard 1-Wire commands.

4) To select the secret of the Signing Page as the destination of the scratchpad data.
The target address must point to a location within the secret of the Signing Page. At least one dummy
byte needs to be sent to the scratchpad before issuing a reset pulse.

5) To copy the scratchpad data to the secret of the Signing Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

Step BI2

Title: Installation of the initial Master Authentication Secret (MAS) in the token. This requires writing
SC32-1 to the token binding page.

Precondition:
� BI1 was performed successfully on the coprocessor used for this step.
� SC32-1 is defined
� SC8-1 is defined
� The token is not write-protected.

Performed:
� Before installing Unique Authentication Secret (UAS) in the token

WP1

42 of 68

Data Flow Diagram:

8 bytes
00

Token

Scratchpad Secrets Memory88

New Token Data
= first 8-byte block
of SC32-1 Buffer

First 28 bytes from token binding page First 4 bytes of new token data

Binding PageROM ID

Exit this loop after all 4 blocks of SC32-1 are copied to token binding page.

New Token Data
= next 8-byte
block of SC32-1

New token
data

Coprocessor

Scratchpad Signing Page Sign. Page Secret

Scratchpad

Compute SHA
Sign Data Page

Scratchpad

Token

Scratchpad Copy
Scratchpad Binding Page

� Next 4
bytes of
new token
data

� SC1
� Token

ROM ID
(w/o CRC)

� 3xFFh

All zero
secret
from BI1

32

15

32

32

20

20

8

8
8

8

Buffer

First 28 bytes from token binding page First 4 bytes of new token data

Buffer
+1

WC
#

WP1

43 of 68

Data Flow Diagram (continued):

Token

SC8-1 Scratchpad

8

8 Binding Page Secrets Memory

Compute next
secret

1st Secret
= all zero

7

32

87 bytes FFh
padding 8

Master Authentication Secret

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Write eight 00 bytes to the token's scratchpad

using the starting address of the secret and
verify correct scratchpad writing.

1) Issue the Load First Secret command with the
correct target address and a computed E/S byte.

2) Read ROM ID of token; verify correct reading
2) Read data of token binding page; verify correct

reading.
3) Using a dummy starting address, erase the

scratchpad.
4) For the new data to be written to the token use

the first 8 bytes of SC32-1.
A

5)

Using the starting address of the signing page,
write the first 28 bytes of the token binding page
to the scratchpad. For the remaining four bytes
of the scratchpad use the first four bytes of the
new token data.

5) Verify correct scratchpad writing and copy
scratchpad data to signing page.

6) Write to scratchpad locations 8 to 22: (data page
address don't care) the next four bytes of the
new token data, SC1 (token binding page
number), token ROM ID (without CRC), 3 bytes
FFh.

7) Using the starting address of the signing page
issue Compute SHA/Sign Data Page. Now the
scratchpad locations 8 to 27 contain the SHA-1
result needed to write the particular 8 bytes to
the token.

8) Write the new token data to the token's
scratchpad using the correct target starting
address and verify correct scratchpad writing

8) Issue the copy scratchpad command with the
correct target address and a computed E/S byte
and send the SHA-1 result computed by the co-
processor.

WP1

44 of 68

Ref. # DS1963S Coprocessor DS1961S Token
9) Read the full content of the binding page and

store it in a buffer. Go to A and continue using
the next 8-byte chunk of SC32-1 until the whole
SC32-1 is written to the token binding page.

10) Write SC8-1 to the scratchpad using the starting
address of the token binding page.

11) Issue the Compute Next Secret command with
the correct starting address.

Detail Notes:
Ref. # Purpose and Comments
1) To install the initial all-zero secret in the token. (See Note 2)

Data is first written to the scratchpad, verified (e.g., read back) and then copied to the secrets memory.
2) To prepare the computation of a SHA-1 result that is required by the token to copy scratchpad data to

memory.
The ROM ID of the token and the data of the token's binding page are used as input for the SHA-1
computation.

3) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.
To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

4) To split the new data for the memory page into 8-byte chunks that fit into the scratchpad.
The size of the DS1961S scratchpad is eight bytes.

5) To prepare the computation of a SHA-1 result that is required by the token to copy scratchpad data to
memory.
The signing page needs to hold the first 28 bytes of the token's memory page that is to be written to
plus the first four new bytes for that memory page. Data is first written to the scratchpad, verified (e.g.,
read back) and then copied to the memory page.

6) To load the scratchpad with the remaining 15 bytes that are needed by the coprocessor to compute a
SHA-1 result that is required by the token to copy scratchpad data to memory.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

7) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and the secret of the signing page.
The target address must point to a location within the Signing Page. The SHA-1 result will be found in
the scratchpad of the coprocessor. It is required by the token to copy scratchpad data to memory.

8) To write one 8-byte segment of the new page data to the binding page in the token.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command. The execution of this command requires the SHA-1 result of Note 7).

9) To prepare the computation of the next SHA-1 result that is required by the token to copy scratchpad
data to memory.
The memory data of the token's binding page is used as input to the SHA-1 computation. Since the
page data has changed, the new data needs to be loaded for the SHA-1 computation (Note 5). Read-
ing the data page allows the verification of successful execution of the copy scratchpad command.

10) To load the SC8-1 subset of the Authentication Input Secret into the scratchpad.
The Compute Next Secret command extends SC8-1 with FFh bytes to form SC15-1. For this reason,
seven bytes of SC15-1 (the portion of the authentication input secret that is loaded into the scratchpad
of the coprocessor) need to be FFh.

11) To compute the initial master authentication secret from the content of the binding page, known
scratchpad data and an all-zero secret, and install the new secret in the token.
The target address must point to a location within the Binding Page. The Authentication Input Secret is
erased from the binding page when the Unique Authentication Secret (UAS) is installed in step BI4.

WP1

45 of 68

Step BI3

Title: Installation of Initial Master Authentication Secret (MAS) in the coprocessor

Precondition:
� SC32-1 is defined
� SC15-1 is defined

Performed:
� When setting up the coprocessor for use in the system

Data Flow Diagram:

Coprocessor

Scratchpad

Scratchpad
Compute SHA

1st Secret

Scratchpad

All zero
secret

32

15

32

32

8

88

SC32-1

SC15-1
(= SC8-1
+ padding)

Master Authentication Secret

Authent. Page Auth. Page Secret
+1

WC
#

+1

WC
#

Signing. Page Sign. Page SecretWC
#

+1

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1963S Token
1) Using a dummy starting address, erase the

scratchpad.
2) Using the starting address of the authentication

page, write SC32-1 to the scratchpad.
2) Verify correct scratchpad writing and copy

scratchpad data to authentication page.
3) Fill scratchpad locations 8 to 22 with SC15-1.
4) Using the starting address of the authentication

page issue Compute SHA/1st Secret.
5) Using the starting address of the secret of the

authentication page, write 8 dummy bytes to the
scratchpad.

6) Using the starting address of the secret of the
authentication page and a computed E/S byte,
issue the Copy Scratchpad command.

WP1

46 of 68

Ref. # DS1963S Coprocessor DS1963S Token
7) Using the starting address of the secret of the

signing page, write 8 dummy bytes to the
scratchpad.

8) Using the starting address of the secret of the
signing page and a computed E/S byte, issue
the Copy Scratchpad command.

1) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

2) To load the first 32 bytes of the Authentication Input Secret into the Authentication Page.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

3) To load the remaining 15 bytes of the Authentication Input Secret into the scratchpad.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

4) To compute a SHA-1 result from the content of the Authentication Page, 15 bytes of known scratchpad
data and an all-zero secret.
The target address must point to a location within the Authentication Page.

5) To select the secret of the Authentication Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Authentication Page. At least one
dummy byte needs to be sent to the scratchpad before issuing a reset pulse.

6) To make the SHA-1 result the secret of the Authentication Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

7) To select the secret of the Signing Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Signing Page. At least one dummy
byte needs to be sent to the scratchpad before issuing a reset pulse.

8) To make the SHA-1 result the secret of the Signing Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

Step BI4

Title: Installation of the Unique Authentication Secret (UAS) in the token. This step is also called
"Binding the secret to the token".

Precondition:
� BI2 was performed successfully.
� BI3 was performed successfully.
� The token is not write-protected.
� SC32-B is defined

Performed:
� Before installing a purse file in the token

WP1

47 of 68

Data Flow Diagram:
Token

New Token Data
= first 8-byte block
of SC32-B Buffer

First 28 bytes from token binding page First 4 bytes of new token data

Binding PageROM ID

Exit this loop after all 4 blocks of SC32-B are copied to token binding page.

New Token Data
= next 8-byte
block of SC32-B

New token
data

Coprocessor

Scratchpad Signing Page Sign. Page Secret

Scratchpad

Compute SHA
Sign Data Page

Scratchpad

Token

Scratchpad Copy
Scratchpad Binding Page

� Next 4
bytes of
new token
data

� SC1
� Token

ROM ID
(w/o CRC)

� 3xFFh

Master
Authent.
secret
from BI3

32

15

32

32

20

20

8

8
8

8

Buffer

First 28 bytes from token binding page First 4 bytes of new token data

Buffer
+1

WC
#

WP1

48 of 68

Data Flow Diagram (continued):

8

Token

Scratchpad

8

Binding Page Secrets Memory

Compute next
secret

Master
Authent.
secret
from BI27

32

87 bytes FFh
padding 8

Unique Authentication Secret

� SC1
� Token

ROM ID
(w/o CRC)

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Read ROM ID of token; verify correct reading
1) Read data of token binding page; verify correct

reading.
2) Using a dummy starting address, erase the

scratchpad.
3) For the new data to be written to the token use

the first 8 bytes of SC32-B.
A

4)

Using the starting address of the signing page,
write the first 28 bytes of the token binding page
to the scratchpad. For the remaining four bytes
of the scratchpad use the first four bytes of the
new token data.

4) Verify correct scratchpad writing and copy
scratchpad data to signing page.

5) Write to scratchpad locations 8 to 22: (data page
address don't care) the next four bytes of the
new token data, SC1 (token binding page
number), token ROM ID (without CRC), 3 bytes
FFh.

6) Using the starting address of the signing page
issue Compute SHA/Sign Data Page. Now the
scratchpad locations 8 to 27 contain the SHA-1
result needed to write the particular 8 bytes to
the token.

7) Write the new token data to the token's
scratchpad using the correct target starting
address and verify correct scratchpad writing

7) Issue the copy scratchpad command with the
correct target address and a computed E/S byte
and send the SHA-1 result computed by the co-
processor.

8) Read the full content of the binding page and
store it in a buffer. Go to A and continue using
the next 8-byte chunk of SC32-B until the whole
SC32-B is written to the token binding page.

9) Using the starting address of the token binding
page, write to scratchpad: SC1, token ROM ID
(without CRC).

WP1

49 of 68

Ref. # DS1963S Coprocessor DS1961S Token
10) Issue the Compute Next Secret command with

the correct starting address.

Detail Notes:
Ref. # Purpose and Comments
1) To prepare the computation of a SHA-1 result that is required by the token to copy scratchpad data to

memory.
The ROM ID of the token and the data of the token's binding page are used as input for the SHA-1
computation.

2) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.
To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

3) To split the new data for the memory page into 8-byte chunks that fit into the scratchpad.
The size of the DS1961S scratchpad is eight bytes.

4) To prepare the computation of a SHA-1 result that is required by the token to copy scratchpad data to
memory.
The signing page needs to hold the first 28 bytes of the token's memory page that is to be written to
plus the first four new bytes for that memory page. Data is first written to the scratchpad, verified (e.g.,
read back) and then copied to the memory page.

5) To load the scratchpad with the remaining 15 bytes that are needed by the coprocessor to compute a
SHA-1 result that is required by the token to copy scratchpad data to memory.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

6) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and the secret of the signing page.
The target address must point to a location within the Signing Page. The SHA-1 result will be found in
the scratchpad of the coprocessor. It is required by the token to copy scratchpad data to memory.

7) To write one 8-byte segment of the new page data to the binding page in the token.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command. The execution of this command requires the SHA-1 result of Note 6).

8) To prepare the computation of the next SHA-1 result that is required by the token to copy scratchpad
data to memory.
The memory data of the token's binding page is used as input to the SHA-1 computation. Since the
page data has changed, the new data needs to be loaded for the SHA-1 computation (Note 4). Read-
ing the data page allows the verification of successful execution of the copy scratchpad command.

9) To load the page number of the binding page and the token's ROM ID into the scratchpad.
This information is used to create the unique authentication secret.

10) To compute the unique authentication secret from the content of the binding page, token-specific
scratchpad data and the current master authentication secret, and install it as the new secret in the
token.
The target address must point to a location within the Binding Page. There is no need to erase the
binding page in the token. Exposing the binding data does not compromise the system security since it
is gives no clues on the Master Authentication Secret.

WP1

50 of 68

Step BI5

Title: Installation of a device file directory with an entry for the purse file in the token.

Precondition:
� BI4 was performed successfully.
� The file name of the purse file to be created is defined
� The page number (location) of the purse file to be created (length = 1 page or less) is defined

Performed:
� When initializing (commissioning) a token for use in the application.

Data Flow Diagram:

Buffer 1

len DM MA BC Local BM File Name FX SP #P CP CRC\ (not used)

Block 1 Block 2 Blk. 3 Blk. 4

Token

New Token Data
= first 8-byte block
of Buffer 1 Buffer 2

First 28 bytes from token directory page First 4 bytes of new token data

Directory PageROM ID

WP1

51 of 68

Data Flow Diagram (continued):

Exit this loop after the contents of Buffer 1 is copied to the directory page.

New Token Data
= next 8-byte
block of Buffer 1

New token
data

Coprocessor

Scratchpad Signing Page Sign. Page Secret

Scratchpad

Compute SHA
Sign Data Page

Scratchpad

Token

Scratchpad Copy
Scratchpad Directory Page

� Next 4
bytes of
new token
data

� Page# 0
� Token

ROM ID
(w/o CRC)

� 3xFFh

Unique
Authent.
secret
from BF1

32

15

32

32

20

20

8

8
8

8

Buffer 2

First 28 bytes from token Directory page First 4 bytes of new token data

Buffer 2
+1

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Installation of the token's Unique Authentication Secret (UAS) as the secret of the workspace page

and signing page of the coprocessor. (Same as step BF1)
2) Verify whether the token belongs to the system.

(Essentially the same as step BF2; however, uses data of the directory page.)
A
3)

Create the device directory with the entry of the purse file (name, page #, length) in the token, as
shown in the data flow diagram.

4) Verify whether the token belongs to the system.
(Essentially the same as step BF2; however, reads the directory page.)

5) Compare the directory page data read from the token to the expected data. If it is the same token as
before, but the data doesn't match, go to A.

WP1

52 of 68

Detail Notes:
Ref. # Purpose and Comments
1) To prepare for the verification of the token's unique authentication secret and for writing to the token.

If the token does not belong to the system, the verification will fail. The coprocessor needs to know the
token's unique secret to write to the token.

2) To verify whether the secret in the token follows the rules that were defined for the application.
It is assumed that the unique authentication secret (UAS) has been installed in the coprocessor in step
BF1. The verification works with any data page.

3) To install a device file directory in the Directory Page (page 0).
See Table 1 for the directory format. This data in buffer 1 assumes that the token is unused, i. e., no
service record exists. Additional service records or purses may be installed later. The device supports a
total of 3 service records that all share the same Unique Authentication Secret. When installing an
additional purse or service record, the data for the directory page is created by first reading the existing
directory and appending another file entry. See AN114 for the device directory format and definitions.

4) To verify whether token was not swapped after the file directory was written.
If the token was swapped, the verification will fail.

5) To verify whether the directory was installed properly.
If necessary, the directory installation is repeated.

Step BI6

Title: Writing a zero-value purse file to the token

Precondition:
� BI5 was performed successfully immediately prior to this step.
� The location of the purse file is known (from BI5).
� The format and contents of the zero-value purse file are known.

Performed:
� Immediately before releasing the token for use in the application.

Data Flow Diagram:

Buffer 1

Token

New Token Data
= first 8-byte block
of Buffer 1 Buffer 2

First 28 bytes from purse page First 4 bytes of new token data

Purse PageROM ID

len CT MUC (dummy) 0-Balance TA. # CP CRC\

Block 1 Block 2

(not used)

Blk. 4

(not used)

Block 3

WP1

53 of 68

Data Flow Diagram (continued):

Exit this loop after the first 2 blocks of Buffer 1 are copied to the purse page.

New Token Data
= next 8-byte
block of Buffer 1

New token
data

Coprocessor

Scratchpad Signing Page Sign. Page Secret

Scratchpad

Compute SHA
Sign Data Page

Scratchpad

Token

Scratchpad Copy
Scratchpad Purse Page

� Next 4
bytes of
new token
data

� Purse
Page#

� Token
ROM ID
(w/o CRC)

� 3xFFh

Unique
Authent.
secret
from BI5

32

15

32

32

20

20

8

8
8

8

Buffer 2

First 28 bytes from purse page First 4 bytes of new token data

Buffer 2
+1

WC
#

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Verify whether the token belongs to the system.

(Essentially the same as step BF2; the page number has to be the one of the new purse file.)
A
2)

Create the zero-value purse file in the token, as shown in the data flow diagram.

3) Verify whether the token belongs to the system.
(Essentially the same as step BF2; however, reads the new purse file.)

4) Compare the purse file read from the token to the expected data. If it is the same token as before,
but the data doesn't match, go to A.

WP1

54 of 68

Detail Notes:
Ref. # Purpose and Comments
1) To verify whether the secret in the token follows the rules that were defined for the application.

It is assumed that the unique authentication secret (UAS) has been installed in the coprocessor in step
BI5 (BF1). The verification works with any data page.

2) To install a valid (though empty) purse file in the particular token.
See Table 3 for the purse file format.

3) To verify whether token was not swapped after the purse file was installed.
If the token was swapped, the verification will fail.

4) To verify whether the purse file was installed properly.
If necessary, the purse file installation is repeated.

Step BF1

Task: Installation of the token's Unique Authentication Secret as the secret of the workspace page and
signing page of the coprocessor

Precondition:
� BI3 was performed successfully on the coprocessor
� BI4 was performed successfully

Performed:
� Preparation for token authentication and updating the purse file

Data Flow Diagram:

Token

ROM ID

Scratchpad
Compute SHA

Next Secret

32

15

32

8

8

8

SC32-B

Unique Authentication Secret

+1

Scratchpad Authent. Page Auth. Page Secret
32 WC

#
WC

#

� 4xFFh
� SC1
� Token

ROM ID
(w/o CRC)

� 3xFFh

Master Auth.
Secret from
BI3

Coprocessor

Scratchpad Workspace Page WS. Page SecretWC
#

WC
#

+1

Signing Page Sign. Page SecretWC
#

WC
#

+1

WP1

55 of 68

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Read ROM ID of token; verify correct reading.
2) Using a dummy starting address, erase the

scratchpad.
3) Using the starting address of the authentication

page, write SC32-B to the scratchpad.
3) Verify correct scratchpad writing and copy

scratchpad data to authentication page.
4) Write to scratchpad locations 8 to 22: (data page

address don't care) four bytes FFh, SC1 (token
binding page number), token ROM ID (without
CRC), three bytes FFh.

5) Using the starting address of the authentication
page issue Compute SHA/Next Secret.

6) Using the starting address of the secret of the
workspace page, write 8 dummy bytes to the
scratchpad.

7) Using the starting address of the secret of the
workspace page and a computed E/S byte,
issue the Copy Scratchpad command.

8) Using the starting address of the secret of the
signing page, write eight dummy bytes to the
scratchpad.

9) Using the starting address of the secret of the
signing page and a computed E/S byte, issue
the Copy Scratchpad command.

2) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To prepare computing the unique authentication secret of the particular token.

The ROM ID of the token is used as input to the SHA-1 computation.
2) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.

To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

3) To load the 32 bytes Binding Data into the Authentication Page.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

4) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the token binding page
number, and seven FFh padding bytes.
This data pattern is the same as the one used when installing the UAS in the token. The target address
must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x xxx0 1000b).

5) To compute the unique authentication secret (UAS) of the particular token.
The target address must point to a location within the Authentication Page.

6) To select the secret of the Workspace Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Workspace Page. At least one
dummy byte needs to be sent to the scratchpad before issuing a reset pulse.

7) To install the UAS as the secret of the Workspace Page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command.

8) To select the secret of the Signing Page as the destination of the SHA-1 result.
The target address must point to a location within the secret of the Signing Page. At least one dummy
byte needs to be sent to the scratchpad before issuing a reset pulse.

9) To install the UAS as the secret of the Signing Page.
The SHA-1 result is still hidden in the scratchpad. Target address and E/S byte could as well be
obtained from first reading the scratchpad before issuing the copy scratchpad command.

WP1

56 of 68

Step BF2

Title: Verify whether the token belongs to the system

Precondition:
� BF1 was performed successfully immediately prior to this step
� BI6 or BF3 was performed successfully

Performed:
� Before updating the purse file

Data Flow Diagram:

20

Token

Purse Page Secrets Memory

Scratchpad
Read Authen-
ticated Page

3

32 4 Bytes
FFh

8

3-Byte Token
Challenge

Unique Auth.
Secret from
BI4

ROM ID Page #

1

7

Scratchpad
Authenticate

Host

32

15

32

20

8

Purse Page
Data

+1

Scratchpad Workspace Page WS. Page Secret
32 WC

#
WC

#

� Token
Challenge

� 4 Bytes
FFh

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

Unique Auth.
Secret from
BF1

Coprocessor

Scratchpad Compare

Match = Token Authen-
tication Test passed

2020

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Write an 8-byte random number to scratchpad.

(The page address used is not relevant.) The
content of scratchpad locations 4 to 6 will be
used as challenge with the next command.

WP1

57 of 68

Ref. # DS1963S Coprocessor DS1961S Token
1) Perform a Read Authenticated Page Command

using the starting address of the page that
contains the purse file. Error-check and save the
page data in a buffer. Error-check and save the
SHA-1 result in a buffer.

2) Using the starting address of the workspace
page, write the page data read from the token to
the scratchpad.

2) Verify correct scratchpad writing and copy
scratchpad data to workspace page.

3) Write to scratchpad locations 8 to 22: (data page
address don't care) 4 bytes FFh, token purse
page number, token ROM ID (without CRC), the
same random number that was used with Read
Authenticated Page.

4) Using the starting address of the workspace
page issue the Authenticate Host command.

4) Take the SHA-1 result from the Read
Authenticated Page command and use it with
the Match Scratchpad command. If this
command results in AAh pattern, the SHA
results did match, confirming that the token
belongs to the system.

5) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To read the purse page and to obtain a SHA-1 result from the token based on a 3-byte challenge,

purse page data, token ROM ID, purse page number, and UAS of the token.
The scratchpad of the DS1961S can only be written in 8-byte blocks. The first four and the last byte
written to the scratchpad are not used for this SHA-1 computation. Using a random challenge
generates different SHA-1 results from otherwise identical input data. Only the legitimate token can
perform the correct SHA-1 computation.

2) To load the 32 bytes purse file into the Workspace Page.
This is a precondition for re-computing the SHA-1 result that was read from the token. Data is first
written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

3) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used
for the purse, the challenge that was used when reading the purse, and four FFh padding bytes.
This is a precondition for recomputing the SHA-1 result that was read from the token. The target
address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x xxx0 1000b).

4) To recompute the SHA-1 result that was read from the token.
To compare the SHA-1 result from the token to the one computed in the coprocessor.
The target address must point to a location within the Workspace Page. To verify the authenticity of the
DS1961S token, the Authenticate Host command must be used. The reason for this is in the pattern
"01" for the upper bits of the MP byte that is used with the Read Authenticated Page command. To set
the same conditions with the DS1963S for verification, the upper two bits of the MPX byte need to have
the same pattern. This is only the case with the Authenticate Host command. If both SHA-1 results
match, the secret of the token was computed according to the rules that were defined for the
application. This is the evidence that the token belongs to the system.

5) To clear the HIDE flag, which, when cleared, opens the scratchpad for write access.
To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

WP1

58 of 68

Step BF3

Title: Updating the purse file in the token

Precondition:
� BF2 was performed successfully
� The new data for the purse file has been determined

Performed:
� Precondition for releasing the purchased goods

Data Flow Diagram:

Buffer 1

Current Purse Page

len CT MUC (dummy) A-Seg. Bal. TA. # CP CRC\

Block 1 Block 2

(undef.)

Blk. 4Block 3

B-Seg. Bal. TA. # CP CRC\

Case 1: new balance to
be written to B-Segment

len CT MUC (dummy) A-Seg. Bal. TA. # CP CRC\

Block 1 Block 2

(not used)

Blk. 4Block 3

new Bal. TA. # CP CRC\

Compute CRC

Buffer 1

Current Purse Page

len CT MUC (dummy) A-Seg. Bal. TA. # CP CRC\

Block 1 Block 2

(undef.)

Blk. 4Block 3

B-Seg. Bal. TA. # CP CRC\

Case 2: new balance to
be written to A-Segment

len CT MUC (dummy) new Bal. TA. # CP CRC\

Block 1 Block 2

(not used)

Blk. 4Block 3

(not used)

Compute CRC

WP1

59 of 68

Data Flow Diagram (continued):

Exit this loop after block 1 of Buffer 1 is copied to the purse page.

New Token Data
= Block 1 of Buffer 1

New token
data

Coprocessor

Scratchpad Signing Page Sign. Page Secret

Scratchpad

Compute SHA
Sign Data Page

Scratchpad

Token

Scratchpad Copy
Scratchpad Purse Page

� Next 4
bytes of
new token
data

� Purse
Page#

� Token
ROM ID
(w/o CRC)

� 3xFFh

Unique
Authent.
secret
from BF1

32

15

32

32

20

20

8

8
8

8

Buffer 2

First 28 bytes from purse page First 4 bytes of new token data

Buffer 2
+1

WC
#

New Token Data:
Case 1: Blk. 3 of Buf. 1
Case 2: Blk. 2 of Buf. 1 Buffer 2

First 28 bytes of purse page as read in BF2 First 4 bytes of new token data

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
A

1)

Using the starting address of the signing page,
write the first 28 bytes of the token purse page
data to the scratchpad. For the remaining four
bytes of the scratchpad use the first four bytes of
the new token data.

WP1

60 of 68

Ref. # DS1963S Coprocessor DS1961S Token
1) Verify correct scratchpad writing and copy

scratchpad data to signing page.
2) Write to scratchpad locations 8 to 22: (data page

address don't care) the next four bytes of the
new token data, token purse page number,
token ROM ID (without CRC), three bytes FFh.

3) Using the starting address of the signing page
issue Compute SHA/Sign Data Page. Now the
scratchpad locations 8 to 27 contain the SHA-1
result needed to write the particular eight bytes
to the token.

4) Write the new token data to the token's
scratchpad using the correct target starting
address and verify correct scratchpad writing

4) Issue the copy scratchpad command with the
correct target address and a computed E/S byte
and send the SHA-1 result computed by the co-
processor.

5) After having updated the A- or B-segment of the
purse file, read the full content of the purse page
and store it in a buffer. Go to A and continue
using block 1 of buffer 1 as the new token data
until the update of the purse file is completed.

6) Using a dummy starting address, erase the
scratchpad.

Detail Notes:
Ref. # Purpose and Comments
1) To prepare the computation of a SHA-1 result that is required by the token to copy scratchpad data to

memory.
The signing page needs to hold the first 28 bytes of the token's memory page that is to be written to
plus the first four new bytes for that memory page. Data is first written to the scratchpad, verified (e.g.,
read back) and then copied to the memory page.

2) To load the scratchpad with the remaining 15 bytes that are needed by the coprocessor to compute a
SHA-1 result that is required by the token to copy scratchpad data to memory.
The target address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x
xxx0 1000b).

3) To compute a SHA-1 result from the content of the Signing Page, 15 bytes of known scratchpad data
and the secret of the signing page.
The target address must point to a location within the Signing Page. The SHA-1 result will be found in
the scratchpad of the coprocessor. It is required by the token to copy scratchpad data to memory.

4) To write one 8-byte segment of the new page data to the purse page in the token.
Data is first written to the scratchpad, verified (e.g., read back) and then copied to the memory page.
Target address and E/S byte could as well be obtained from first reading the scratchpad before issuing
the copy scratchpad command. The execution of this command requires the SHA-1 result of Note 3).

5) To prepare the computation of the next SHA-1 result that is required by the token to copy scratchpad
data to memory.
The memory data of the token's purse page is used as input to the SHA-1 computation. Since the page
data has changed, the new data needs to be loaded for the SHA-1 computation (Note 1). Reading the
data page allows the verification of successful execution of the copy scratchpad command.

6) To erase data in the scratchpad.
The target address issued is not relevant; any value is accepted.

WP1

61 of 68

Step BF4

Title: Verify whether the purse file was written successfully to the same token that was read before.

Precondition:
� BF3 was performed successfully
� The expected content of the purse file is known.

Performed:
� Immediately before dispensing goods

Data Flow Diagram:

20

Token

Purse Page Secrets Memory

Scratchpad

Read Authen-
ticated Page

3

32 4 Bytes
FFh

8

3-Byte Token
Challenge

Unique Auth.
Secret from
BI4

ROM ID Page #

1

7

Scratchpad

Authenticate
Host

32

15

32

20

8

Purse Page
Data

+1

Scratchpad Workspace Page WS. Page Secret32 WC
#

WC
#

� Token
Challenge

� 4 Bytes
FFh

� Token
Purse
Page #

� Token
ROM ID
(w/o CRC)

Unique Auth.
Secret from
BF1

Coprocessor

Scratchpad Compare

Match = Token Authen-
tication Test passed

2020

Purse Page
Data Compare

Buffer 1 (data
from BF3)

WP1

62 of 68

Detail Description:

Ref. # DS1963S Coprocessor DS1961S Token
1) Write an 8-byte random number to scratchpad.

(The page address used is not relevant.) The
content of scratchpad locations 4 to 6 will be
used as challenge with the next command.

1) Perform a Read Authenticated Page Command
using the starting address of the page that
contains the purse file. Error-check and save the
page data in a buffer. Error-check and save the
SHA-1 result in a buffer.

2) Using the starting address of the workspace
page, write the page data read from the token to
the scratchpad.

2) Verify correct scratchpad writing and copy
scratchpad data to workspace page.

3) Write to scratchpad locations 8 to 22: (data page
address don't care) 4 bytes FFh, token purse
page number, token ROM ID (without CRC), the
same random number that was used with Read
Authenticated Page.

4) Using the starting address of the workspace
page issue the Authenticate Host command.

4) Take the SHA-1 result from the Read Authenti-
cated Page command and use it with the Match
Scratchpad command. If this command results
in AAh pattern, the SHA results did match, con-
firming that the token belongs to the system and
that it is the same token as in previous steps.

5) Compare the data read from the token to the
expected purse file data. If it is the same token
as before, but the data doesn't match, repeat
step BF3 (or BI6, respectively).

Detail Notes:
Ref. # Purpose and Comments
1) To read the purse page and to obtain a SHA-1 result from the token based on a 3-byte challenge,

purse page data, token ROM ID, purse page number, and UAS of the token.
The scratchpad of the DS1961S can only be written in 8-byte blocks. The first four and the last byte
written to the scratchpad are not used for this SHA-1 computation. Using a random challenge
generates different SHA-1 results from otherwise identical input data. Only the legitimate token can
perform the correct SHA-1 computation.

2) To load the 32 bytes purse file into the Workspace Page.
This is a precondition for re-computing the SHA-1 result that was read from the token. Data is first
written to the scratchpad, verified (e.g., read back) and then copied to the memory page.

3) To load the scratchpad with 15 bytes of data that identify the token (ROM ID), the memory page used
for the purse, the challenge that was used when reading the purse, and four FFh padding bytes.
This is a precondition for recomputing the SHA-1 result that was read from the token. The target
address must point to byte number 8 of any regular memory page (T15:T0 = 0000 000x xxx0 1000b).

WP1

63 of 68

Ref. # Purpose and Comments
4) To recompute the SHA-1 result that was read from the token.

To compare the SHA-1 result from the token to the one computed in the coprocessor.
The target address must point to a location within the Workspace Page. To verify the authenticity of the
DS1961S token, the Authenticate Host command must be used. The reason for this is in the pattern
"01" for the upper bits of the MP byte that is used with the Read Authenticated Page command. To set
the same conditions with the DS1963S for verification, the upper two bits of the MPX byte need to have
the same pattern. This is only the case with the Authenticate Host command. If both SHA-1 results
match, the secret of the token was computed according to the rules that were defined for the
application. This is the evidence that the token belongs to the system.

5) To verify whether the updated purse file (after-purchase value) was actually written to the token.
From the previous step (BF3) the host still knows the expected new purse file data. Only if the purse
was updated will the merchandise be released.

APPENDIX C, SECURITY Q&A

DS1963S Token

What can happen if an attacker knows the authentication secret of a purse?
Knowing the authentication secret, an attacker can program a microcontroller to emulate (behave like) a
token in all of its functions. The emulated device will pass the authentication test (because it knows the
secret) and the purse file will be accepted (because the embedded signature was copied from a valid
device). After purchases the emulator can be reset to start over again at the original purse value, this way
spending the initially loaded amount of money multiple times.
Remedy: Set up the revaluing and vending stations to keep transaction records and upload the records
into a central account database. Comparing revaluing and spending history for each token identified by its
ROM ID reveals fraudulent activity. Install a blacklist of tokens to be rejected in all vending stations. A
system that uses unique authentication secrets limits the attacker's success to only one part. In a system
that uses common authentication secrets (same secret for all purses) an attacker who knows the authenti-
cation secret could emulate all tokens, forcing the service provider to install new secrets in all tokens and
updating the secrets in all vending and revaluing stations.

How feasible is it for an attacker to discover an authentication secret?
If the secret is actually computed rather than loaded like a password, it is virtually impossible to guess it
of discover it by trial and error. The secret's size of 64 bits allows for 264 or 18.446744 * 1018 possible
combinations. Using a fast computer that can test 1 million tests per second, testing all combinations will
take no longer than 18.446744 * 1012 seconds. With 60*60*24 or 86400 seconds per day, this takes 213.5
* 106 days or 580000 years. The security of the secret is maximized by the fact that it can only be
changed all 64 bits at a time. If the secret could be changed one bit at a time, an attacker could discover it
after maximum 64 attempts. If the secret could be changed one byte at a time, an attacker could discover
it after maximum 8*256 or 2048 attempts. The 64-bits at a time concept, however, creates the maximum
possible hurdle for an attacker to discover the secret. Even if one secret was discovered, only a single
device could be emulated --- provided that the application uses unique authentication secrets.

WP1

64 of 68

What can happen if an attacker knows how to create valid authentication secrets?
To create valid authentication secrets an attacker needs to know the Authentication Input Secret (SC32-1,
SC15-1), Binding Data (SC32-B), Binding Code (SC7-B) and public data pertaining to the particular
token. As with all secrets, the service provider must ensure that the secret information does not get into
the wrong hands. With humans being the weakest link in the chain, the best way to achieve the desired
security is by means of partial secrets (SC32-2, SC15-2, SC32-3, SC15-3, etc.). Even if these parameters
leaked out and an attacker would install valid authentication secrets in legally obtained tokens, these de-
vices will not be able to cause any damage because the purses will be rejected due to invalid signature.

What can happen if an attacker knows how to create valid purse signatures?
To create valid purse signatures an attacker needs to know the Signing Input Secret (SC32-S, SC15-S),
Initial Signature (SC20-S), Signing Challenge (SC3-S), and public data pertaining to the particular token.
The service provider must ensure that the secret information does not get into the wrong hands. Although
not mentioned in the Scenario A description, the signing secret can be computed from partial secrets the
same way as the master authentication secret is computed. Knowing how to create valid signatures, an
attacker could revalue any purse that has a valid authentication secret. This would force the service pro-
vider to change the system-wide Signing Secret. Using fresh tokens without a valid authentication secret,
the system cannot be attacked because these parts would not pass the authentication test.
Remedy: Set up the revaluing and vending stations to keep transaction records and upload the records
into a central account database. Comparing revaluing and spending history for each token identified by its
ROM ID reveals fraudulent activity. Install a blacklist of tokens to be rejected in all vending stations.
Develop and implement a plan to rotate the signing secret regularly.

Why is page 8 not recommended for purse files?
If a purse were installed in page 8, it may be possible to attack the system through replay of a valid purse
file. In this case there is no need for the attacker to know any secret. This attack could work with any
valid token that has money in the purse file. As a precondition for this attack one needs a valid token that
is connected to a fast microcontroller. On the other side of the microcontroller is an empty iButton, which
(instead of the token) gets in contact with the vending station. The microcontroller memorizes the original
purse content and the page write cycle count that the purse's signature is valid with.
When during a transaction (Step AF2) the vending station issues the Read Authenticated Page command,
the microcontroller writes the saved counter value, purse page number, token ROM ID and challenge to
the token's scratchpad. Instead of the Read Authenticated Page command, the micro issues the Sign Data
Page command. To the host the micro replays the saved purse content, saved cycle counter and then
transmits the SHA-1 result from Sign Data Page. The host will accept the data for authentication and
purse signature test. When the vending station updates the purse (Step AF4), the microcontroller will let
the communication pass through to the token. When the token and the new data are verified by the vend-
ing station (Step AF5), the microcontroller writes the incremented saved counter value, purse page num-
ber, token ROM ID and challenge to the token's scratchpad. Instead of the Read Authenticated Page
command, the microcontroller issues the Sign Data Page command. To the vending station the micro re-
plays the new purse data, incremented saved cycle counter and then transmits the SHA-1 result from Sign
Data Page.
Remedy: This type of attack can only succeed if the vending station cannot detect any delays in the
communication with the token. A vending station operating at standard 1-Wire speed and a token com-
municating with the microcontroller at Overdrive speed makes this attack possible. Therefore, always
communicate with the token at Overdrive speed and do not use page 8 for a purse file.

WP1

65 of 68

What can happen if an attacker cracks open a vending station and gets physical access to the inside
of the electronics box?
If the electronics box remains functioning, the attacker could eavesdrop on the communication between
microcontroller and coprocessor during a vending transaction. During the initial vending step AF1, the
Binding Data (SC32-B) and Binding Code (SC7-B) are exposed as they are written to the coprocessor.
When the purse's signature is verified in step AF3, the Initial Signature SC20-S and the Signing
Challenge SC3-S are exposed on their way to the coprocessor. Knowing these system constants the
attacker has two choices: a) take the coprocessor and use it to revalue purses (see What can happen if an
attacker has a coprocessor that is set up for an application? Part 1) or b) convert the coprocessor into a
token for purse replay attacks (see What can happen if an attacker has a coprocessor that is set up for an
application? Part 2).

What can happen if an attacker has a coprocessor that is set up for an application? Part 1
Having access to a coprocessor with a valid signing secret and knowing SC20-S and SC3-S, the attacker
can revalue any purse that is part of the system, i. e., which passes the authentication test.
Remedy: Set up the revaluing and vending stations to keep transaction records and upload the records
into a central account database. Comparing revaluing and spending history for each token identified by its
ROM ID reveals fraudulent activity. Install a blacklist of tokens to be rejected in all vending stations.
Develop and implement a plan to rotate the signing secret regularly. Keep the coprocessor and system
control unit locked in a physically secure enclosure that cannot be opened without major damage to its
contents.

What can happen if an attacker has a coprocessor that is set up for an application? Part 2
Having access to a coprocessor with a valid Master Authentication Secret and knowing SC32-B and SC7-
B, the attacker can make the coprocessor compute the SHA-1 result for any DS1963S ROM ID to pass
the authentication test of step AF2. To take advantage of this capability the attacker needs to also have
access to a valid token that belongs to the system. The attack uses a similar technique as described in Why
is page 8 not recommended for purse files? To prepare the attack, the purse file of a valid token is first
copied to page 8 of the stolen coprocessor. Next the Unique Authentication Secret of the valid token is
installed as the secret of page 8. This procedure is very similar to step AF1, however, the secret is now
loaded to starting address 0200h, the location of the Master Signing Secret. For this reason the
coprocessor loses its capability to compute signatures for purses.

The prepared coprocessor is connected to a fast microcontroller. On the other side of the microcontroller
is an empty iButton, which (instead of a token) gets in contact with the vending station. The
microcontroller needs to memorize the original purse data, the page write cycle count that the purse's
signature is valid with, and the ROM ID of the token that the purse file was copied from. Whenever
during a vending transaction the command for reading the token's ROM ID appears (e. g., step AF1), the
microcontroller replays the ROM ID of the valid token. At step AF2 a Read Authenticated Page
command needs to be performed. To generate a proper response, the microcontroller writes the original
purse write cycle counter value, original purse page number, token ROM ID and challenge to the
coprocessor's scratchpad. Next the microcontroller changes the purse page address to page 8, and instead
of Read Authenticated Page issues the Sign Data Page command. To the vending station the micro
replays the saved purse data, saved cycle counter and then transmits the SHA-1 result from Sign Data
Page. The vending machine will accept the data for authentication and purse signature test.

When the vending station updates the purse (Step AF4), the microcontroller changes the purse page
address to page 8 but otherwise lets the communication pass through to the stolen coprocessor. When the
token and the new data are verified by the vending station (Step AF5), the microcontroller writes the
incremented original counter value, original purse page number, token ROM ID and challenge to the

WP1

66 of 68

coprocessor's scratchpad. Next the microcontroller changes the purse page address to page 8, and instead
of Read Authenticated Page issues the Sign Data Page command. To the vending station the micro
replays the new purse data, incremented original cycle counter and then transmits the SHA-1 result from
Sign Data Page. This replay attack will be successful until the mismatch between revaluing and spending
is discovered and the ROM ID of the emulated token is blacklisted.
Remedy: This type of attack is only possible if the vending station communicates at standard speed and
the microcontroller communicates with the converted coprocessor at Overdrive speed. Therefore, vending
stations should always communicate with the tokens at Overdrive speed.

What can happen if an attacker has two or more coprocessors of the same system?
If an attacker also knows the system constants SC32-B, SC7-B, SC20-S and SC3-S, an attack is possible
that uses one coprocessor to create valid purse files for invented DS1963S ROM IDs and another
coprocessor to replay these files as described in What can happen if an attacker has a coprocessor that is
set up for an application? Part 2. Creating a new purse file for a new ROM ID after each purchase makes
blacklisting a futile effort since the same ROM ID needs never appear again.
Remedy: This type of attack is only possible if the vending station communicates at standard speed and
the microcontroller communicates with the converted coprocessor at Overdrive speed. Therefore, vending
stations should always communicate with the tokens at Overdrive speed. Since it is impractical to store
the ROM IDs of all valid tokens in all vending and revaluing stations or to always dial-in to a central
database to verify a ROM ID, it is crucial to prevent an attacker from discovering the system constants
when they are exposed inside the electronics box. To protect these constants, a vending station could be
equipped with sensors that detect physical intrusion and in the event instruct the host processor to erase
the secrets from the coprocessor. In addition, after each power-up, the vending stations could dial-in to
the service provider and report the power-down event. The vending station could refuse any user trans-
actions unless the contact with the service provider was established. If available, the service provider
could use "Caller ID" to verify the phone number the vending station is calling from. A phone number
that is not listed in the database indicates that the vending station resides at an unknown place. In that
case the vending station could be instructed to erase the secrets from its coprocessor.

Why should I use a coprocessor if the microcontroller in the system control unit is fast enough to
perform the SHA-1 computations?
To keep the input secrets from getting into the wrong hands, the microcontroller needs to be secure, i. e.,
it must be a unit that can be locked to prevent reading and disassembling the firmware. A secure micro-
controller is quite expensive and may be slower in the SHA-1 computation than a DS1963S coprocessor.
The coprocessor approach allows using a standard microcontroller, reducing the overall hardware cost. In
addition, the coprocessor supports the use of partial secrets. With a secure microcontroller the secrets are
known and accessible at the time of programming.

Why is data for DS1963S SHA commands loaded into the scratchpad starting at address 8 or 20?
The SHA-1 result that the DS1963S generates is loaded into the scratchpad starting at address 8. This was
done to allow space at the beginning and the end of the scratchpad for TMEX formatting. For simplicity,
this starting address was then used for other commands that require input through the scratchpad. Except
for Read Authenticated Page and Compute Challenge, the scratchpad is loaded with 15 bytes of data. The
first 12 of these bytes were originally intended to accommodate the purse page write cycle counter (4
bytes), token data page number (MPX byte), and the token's ROM ID without CRC, as used with the Sign
Data Page command. The 3-byte challenge was just appended to that string. The same location of the
challenge was then used with Read Authenticated Page and Compute Challenge.

WP1

67 of 68

What are the mysteries about the M-bit, X-bit and SEC#?
The "M-bit" of the DS1963S is intended for use with the user-authentication scheme, which is not rec-
ommended because of its inherent weakness.
The "X-bit" of the DS1963S is set only with the commands Compute Challenge and Authenticate Host.
These commands are intended for use with the user-authentication scheme. The X-bit being set makes the
SHA-1 result different from what one gets with other commands if all the other input data were the same.
The "SEC#" of the DS1963S was also intended for use with the user-authentication. The default value of
SEC# is 000; it is loaded with the page number when using the Compute Challenge command. So far the
SEC# is only used in the application "small cash with DS1961S token" when verifying the authenticity of
the token using the Authenticate Host command. The Authenticate Host command needs to be used be-
cause the DS1961S sets the X-bit to 1 when performing the Read Authenticated Page command. With a
DS1963S token, the Validate Data Page command is used for that purpose.

DS1961S Token

What can happen if an attacker knows the authentication secret of a token?
Knowing the authentication secret, an attacker can program a microcontroller to emulate (behave like) a
token in all of its functions. The emulated device will pass the authentication test (because it knows the
secret). The purse file will be accepted, since it does not contain any signature. After purchases the emu-
lator can be reset to start over again at the original purse value, this way spending the initially loaded
amount of money multiple times. Instead of using an emulator, the attacker could as well restore the purse
file to its original value.
Remedy: Set up the revaluing and vending stations to keep transaction records and upload the records
into a central account database. Comparing revaluing and spending history for each token identified by its
ROM ID reveals fraudulent activity. Install a blacklist of tokens to be rejected in all vending stations. A
system that uses unique authentication secrets limits the attacker's success to only one part. In a system
that uses common authentication secrets (same secret for all tokens) an attacker who knows the authenti-
cation secret could load the secret into fresh tokens (not requiring an emulator) and install valid purse
files. This would force the service provider to install new secrets in all tokens and updating the secrets in
all vending and revaluing stations. Therefore, in applications that use the DS1961S as a token, the use of
unique authentication secrets is an absolute requirement.

How feasible is it for an attacker to discover an authentication secret?
(Same as with DS1963S token)

What can happen if an attacker knows how to create valid authentication secrets?
To create valid authentication secrets an attacker needs to know the Authentication Input Secret (SC32-1,
SC8-1), Binding Data (SC32-B), Binding Page Number (SC1) and public data pertaining to the particular
token. The service provider must ensure that the secret information does not get into the wrong hands.
The best way to achieve the desired security is by means of partial secrets (SC32-2, SC8-2, SC32-3, SC8-
3, etc.). Knowing all this secret information, an attacker could install valid authentication secrets and
valid purse files in fresh tokens as well as re-value purses.
Remedy: Set up the revaluing and vending stations to keep transaction records and upload the records
into a central account database. Comparing revaluing and spending history for each token identified by its
ROM ID reveals fraudulent activity. Install a blacklist of tokens to be rejected in all vending stations.
Develop and implement a plan to rotate the authentication secret regularly.

WP1

68 of 68

What can happen if an attacker gets hold of a coprocessor that is set up for an application?
Having access to a coprocessor with a valid Master Authentication secret and knowing Binding Data
(SC32-B), Binding Page Number (SC1), and public data pertaining to the particular token, the attacker
can revalue any purse that is part of the system. However, the attacker cannot set up fresh tokens because
this requires also knowledge of the Authentication Input Secret. SC32-B and SC1 can be obtained by
eavesdropping on the communication with a coprocessor in a vending or revaluing station.
Remedy: Set up the revaluing and vending stations to keep transaction records and upload the records
into a central account database. Comparing revaluing and spending history for each token identified by its
ROM ID reveals fraudulent activity. Install a blacklist of tokens to be rejected in all vending stations.
Develop and implement a plan to rotate the authentication secret regularly. Keep the coprocessor and
system control unit locked in a physically secure enclosure that cannot be opened without major damage
to its contents.

Why should I use a coprocessor if the microcontroller in the system control unit is fast enough to
perform the SHA-1 computations?
(Same as with DS1963S token)

Why is the DS1963S purse file format not used with the DS1961S?
Due to its smaller scratchpad, writing a full 32-byte page requires four copy scratchpad operations and as
many SHA-1 computations. The DS1961S also has no internal power source. For this reason, writing
more data increases the risk of write cycles that occur at insufficient energy, which leads to data corrup-
tion or data that cannot be read without ambiguity. Originally, only the "purse A scheme" was used,
which in a touch environment occasionally caused data failures when the contact between token and
vending station broke just during a write cycle. As a remedy, the A-B Scheme was developed, which in
any case keeps the new and the previous monetary value in the purse. This way, if the contact breaks, a
mismatch in the length byte and CRC value will indicate that an update cycle did not complete. With this
information the cycle can be finished at the next occasion and the data integrity is maintained. Extensive
tests were made over the course of several days and well over 1 million debit cycles with noise injected in
the 1-Wire line. With the Refresh Scratchpad command (see DS1961S data sheet) and the A-B Scheme,
no loss of monetary value occurred during these tests.

Why is the SHA-1 input of the DS1961S designed as we know it?
The overriding objective was to be able to use a DS1963S as a coprocessor. For this to work, the
DS1961S Copy Scratchpad command must be defined in such a way that the SHA-1 MAC can be com-
puted by a DS1963S using a "Class B" SHA-1 subcommand - i.e. a subcommand in which the values of
the counter and serial number fields are taken from the scratchpad. The four "Class B" subcommands are
Sign Data Page, Validate Data Page, Compute First Secret, and Compute Next Secret. Of these, Sign
Data Page is the only one, which does not set the HIDE flag. Therefore, the DS1961S Copy Scratchpad
command must be defined so as to allow a DS1963S coprocessor using the Sign Data Page subcommand
to calculate the MAC.
The DS1963S Sign Data Page subcommand, assuming that no Compute Challenge/Authenticate Host
sequence has been completed, has M=0 and X=0. Therefore, the DS1961S Copy Scratchpad command
must also have M=0 and X=0. The DS1961S Read Authenticated Page command must have M and X set
to something different, so that a fraudulently obtained DS1963S cannot be used to manufacture a correct
Read Authenticated Page MAC on-the-fly for fraudulent data. Therefore, it must have M=0 and X=1, so
that it can be validated by a DS1963S Authenticate Host subcommand.
Therefore, the fundamental reason for the difference in the M and X settings for the Read Authenticated
Page command between the DS1963S and the DS1961S is the requirement in the DS1961S for a SHA
computation during the Copy Scratchpad command, which has no counterpart on the DS1963S. The dif-
ferences, though counterintuitive, are legitimate and should not be changed.

